UNIGRAPHICS

GRIP FUNDAMENTALS
STUDENT GUIDE

NOVEMBER 2003
MT13010 — Unigraphics NX 2

EDS Inc.

Proprietary & Restricted Rights Notices

Copyright

Proprietary right of Unigraphics Solutions Inc., its subcontractors, or its suppliers are included in this
software, in the data, documentation, or firmware related thereto, and in information disclosed
therein. Neither this software, regardless of the form in which it exists, nor such data, information, or
firmware may be used or disclosed to others for any purpose except as specifically authorized in writing
by Unigraphics Solutions Inc. Recipient by accepting this document or utilizing this software agrees
that neither this document nor the information disclosed herein nor any part thereof shall be
reproduced or transferred to other documents or used or disclosed to others for manufacturing or any
other purpose except as specifically authorized in writing by Unigraphics Solutions Inc.

©2003 Electronic Data Systems Corporation. All rights reserved.
Restricted Rights Legend

The commercial computer software and related documentation are provided with restricted rights.
Use, duplication or disclosure by the U.S. Government is subject to the protections and restrictions as
set forth in the Unigraphics Solutions Inc. commercial license for the software and/or documentation
as prescribed in DOD FAR 227-7202—3(a), or for Civilian Agencies, in FAR 27.404(b)(2)(i), and any
successor or similar regulation, as applicable. Unigraphics Solutions Inc., 10824 Hope Street, Cypress,
CA 90630.

Warranties and Liabilities

All warranties and limitations thereof given by Unigraphics Solutions Inc. are set forth in the license
agreement under which the software and/or documentation were provided. Nothing contained within
or implied by the language of this document shall be considered to be a modification of such warranties.

The information and the software that are the subject of this document are subject to change without
notice and should not be considered commitments by Unigraphics Solutions Inc.. Unigraphics
Solutions Inc. assumes no responsibility for any errors that may be contained within this document.

The software discussed within this document is furnished under separate license agreement and is
subject to use only in accordance with the licensing terms and conditions contained therein.

Trademarks

EDS, the EDS logo, I-DEAS, UNIGRAPHICS SOLUTIONS®, UNIGRAPHICS®, GRIP®,
PARASOLID®, UG®, UG/..®, UG SOLUTIONS®, iMAN® are trademarks or registered
trademarks of Electronic Data Systems Corporation or its subsidiaries. All other logos or trademarks
used herein are the property of their respective owners.

Grip Fundamentals Student Guide Publication History:

Version 16.0 oL January 2000
Version 17.0o December 2000
Version 180 February 2002
Unigraphics NX oo, December 2002

Unigraphics NX2oo oo, November 2003

Table of Contents

Table of Contents

Introductioncciiiiiiiiiiirirernensacacacananans -1
Course OVEIVIEW .. .vvttte et -1
GRIP Applicationsc..iiuiiiininennen .. -2
Course Objectivesovvuvininnen.... -3
GRIP Development Processccovtietinecnecencennonss 1-1
File Naming Conventionsccouvuvunnn.. 1-2
Creating a GRIP Program 1-2
Program Development using GRADE 1-3
Bdit ... 1-4
Compilingoiinini i 1-5
Sections of a GRIP Compiler Listing 1-7
Errors ... 1-8
Linking i 1-9
Running a Program, 1-10
Activity: Sample GRIP program with errors 1-11
Activity: Edit a GRIP program 1-15
GRIP Language Componentscceeeeeeeeceacensonss 2-1
GRIP Program Organizationcovuven... 2-2
GRIP Command Structurec..coviuni... 2-3
GRIP Vocabulary i, 2-4
Major Words oo 2-4
Minor Words 2—4
Global Parameter Access Symbols (GPAs) 2—4
Entity Data Access Symbols (EDAS) 2-5
Conventions Used in this Manual 2—6
Declaring Variables i i 2-17
Numeric Variables L. 2-17
Entity Variables 2-12
String Variables i 2—-13
Initializing and Setting Variables 2—-16
Assigning Values to String Variables 2—17
Assigning Values to Numeric Variables 2—18
Assigning Values to Entity Variables 2—-19
Subrange Operatorscoiiiiiiiinn.... 2-20
©EDS GRIP Fundamentals

All Rights Reserved Student Guide

Table of Contents

Rules for Using Subrange Operators 2-21
Detect Undeclared Variables 2-23
EXercises ..o e 2-25

Two Dimensional Commandsccviiitiieennnnnnans 3-1
Positional Modifiers 3-2
Two-Dimensions — PMOD2 3-2
Three-Dimensions — PMOD3 3-3

Point 3—4
Point: Coordinateso, 3-5
Point: CenterofaCircle 3—6
Point: EndPoint 3-7
Point: Intersection Point 3-8
Point: EDA 3—-10

Line ... e 3—11
Line: Between Two Specified Points (Coordinates) 3—-12

Line: Between Two Existing Points 3—-13

Line: Parallel at a Distance 3—-14

Line: Through a Point, Atan Angle 3—16

Line: Point, Tangenttoa Curve 3-18

Line: Through a Point, Parallel/Perpendicular to a Line .. 3-20

Line EDAS e 3-22
Activity The L-shape 3-24

More Two Dimensional Commandscoeiiiinnnns 4-1
CIrcle .o e 4-2
Circle: Center Coordinates, Radius 4-3
Circle: Center Point, Radius 4-5
Circle: Center Point, Tangenttoa Line 4-7
Circle: Center Point, Point onthe Arc 4-9
Circle: Through Three Points 4-11

Fillet ... 4—12
Fillet: Two Objects, Center Point 4-13
Fillet: Two Lines, Positional Modifiers 4—16
Circle EDAS . ..o e 4—-19
Entity Independent EDA’s o . 4-21
NeSting ..ottt e 4-23
Activity: Sheet Metal Part 4-24
Controlling Program Executioncc0iviiienne. 5-1
Introduction 5-2
Suggested Labeling Guidelines 5-3

ii GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Table of Contents

JUMP: Unconditional Branching

5-6
JUMP: Conditional Branching 5-=7
DO: Program Loopoiiii i 5-9
IF: Logical IF i, 5-12
BLOCKIF: Block If o i 5-16
IF Boolean Operatorsc..oviiinininen.... 5-21
ErrorHandling......... i i, 5-23
Basic Interactive Commandsccoiiiiiiinininnnnnns 6-1
Interactive Commands oo, 6-2
Typical Interactive Menu Flow 6-5
Program Outline using Interactive Statements 6—38
POS: Indicate Screen Position Point 6—11
GPOS: Indicate Generic Point Position 6—13
PARAM: Enter Parameters 6—15
Activity: Interactive L—Shape 6—18
Advanced Interactive Commandscoiiviiienenennns 7-1
Interactive Commands, 7-2
IDENT: Select Objectsccouiiniiniinen.... 7-3
TEXT: Enter Text, 7-8
CHOOSE: Choose Single Option 7-11
MCHOOS: Choose Multiple Options 7-15
Activity: Interactive Sheet Metal Part 7—18
Solid Object Modeling Commandsccovviieenncenns 8-1
Solid Feature Creation, .. 8§-2
Solid Operationscouuiiiiiniiinnnenn.. 8§-12
Solid Object EDASo 8—18
Solid Object GPAS 8—18
Activity: Extrude the L—Shape 8—-19
Activity: Solid L—Shape 8-20
Database Cyclingcciiiiiiiiinrenrenecnocannannans 9-1
File ACCESS .o vvit i e 9-2
Object Cyclingcoviii e 9-9
INEXTE: Initialize Data Model Cycling 9-11
NEXTE: Cycle to Next Object, 9-12
INEXTN: Initialize Non—geometric Object Cycling 9-13
NEXTN: Cycle to Next Non—geometric Object 9-15
Non-Geometric Database Cycling Example 9-16
Reading and Writing to Text Files 9-17
©EDS GRIP Fundamentals il

All Rights Reserved Student Guide

Table of Contents

READ: Read Text fromaPFile 9-19
WRITE: Write TexttoaFile 9-21
PRINT: Print Data on Listing Device 9-22
Activity: Readinga Text File 9-23
Object ACCESS vt v vvvvtineenereotonsonsssscescascsnssnsonss 10-1
Categories and Layer Control 10-2
LAYER: Layer Controlo, 10-3
CAT: Create Layer Categoryccvuiena... 10-5
CATE: Edit Categorycoiiiiniineninnenn.. 10-7
CATD: Delete Categoryoovininiineninenn.. 10-8
CATV: Query Categoryovviiiiiniiniinn... 10-9
Object Controlo, 10-10
MASK: Class Selection oo, 10-12
TYPF: Object Type . ..covviin e 10-15
OBTAIN: Object Information 10—-17
Object Display Controlo ... 10-19
DRAW: Control Object Display 10-20
DELETE: Deletec..oiiiiiiiiiinna.. 10-23
Global Parameter Access (GPA) Symbols 10-24
Access Type (Read and Write Options) of GPA Functions 10—24
Data Types Assignedto GPAs 10-24
GPARaANgeooi i 10-26
System Constants, 10-26
Active Part Status i 10-28
Decimal Places i 10-28
Work Layer ... 10-29
Work View 10-29
Unit of Measurementcoiiin.... 10-30
UserID ... 10-30
Activity: Entity Cycling L. 10-31
Transformationsciiiiiiiiiiiiiiiiiiiinnnenns. 11-1
Introduction i 11-2
TRANSF: Transformation 11-4
MATRIX: Translate, 11-6
MATRIX: Scaleco i 11-7
MATRIX: Mirrorc.oouiiniiniiiiiiiinan. 11-8
MATRIX: Rotate i, 11-9
MATRIX: Multiple Transformations (Concatenation) 11-10
Activity Transforming the L-Shape 11-12
Functionscociiiiiiiiiiiiiiiiiiieienncnenecnnnnnnns 12-1
Processing Arithmetic Expressions 12-2
iv GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Table of Contents

Mathematical Functions 12-3
Arithmetic Functions 12-5
Trigonometric Functions 12-7
String Functions i 12-9
Return Current Date 12-10
SetFullDate Flag o ... 12—-11
Return Current Time 12-12
Create Blank Characters 12-13
Number of Charactersina String 12-14
Convert Integer to Character String 12—-15
Convert Real Number to Character String 12—-16
Convert String to Real Number 12—-17
ASCII Value of a Character 12-18
Return string with ASCII Value of N 12-19
Replace Charactersina String 12-20
Extract a portion of a Character String 12-22
Position of Charactersina String 12-23
Activity: Date Conversioncovuiinenaan.. 12-24
Activity: Case Conversion (Optional) 12-25
Subroutinescccitiiiiiiiiiiiiiiiiiiiitiiesieeeaess 13—1
Subroutine Programming 13-2
Call Statement 13-3
Procedure Statement i 13-4
Return Statement 13-6
Activity: Case Converter Subroutine 13-8
Drafting Functionscciiiiiiiiinnrcnnnccnnscenases 14=1
Drawing OVerviewttt 14-3
CreateaDrawing, 14-4
Change Drawing Size, 14-5
Add ViewtoDrawing 14—-6
VerifyaDrawing 14-7
DeleteaDrawing 14-11
Current Drawing i, 14-12
Import an Existing Part 14-13
Import an Existing Part Grouped 14-16
Activity: Drawing Creationcovun.. 14-19
Dimensions and Drafting Aidsccciiiieeneee.. 15=1
Dimensions e 15-2
Creating Drafting Objects on Drawings 15-5
©EDS GRIP Fundamentals

All Rights Reserved Student Guide

Table of Contents

Horizontal and Vertical Dimensions
Angular DImensionst
Radius Dimensionscuuiiiuiiiinnnenn.
Dimension Statements,
Extension Line Display
Text and Arrow Location
Entity Site related to Text
Drafting Aids i
NOtE oot
Label
Linear Centerline,
Drafting EDAs: Drafting Object Origin
Drafting EDAs: Text.........c.ooiiiiiiininnn...
Activity: Dimensioning the L-shape

Attri .
ttributes (Optional)c ittt iiiiineenncnnnnnns
Object Namesttt
&NAME ... e
ENUM .
&ENAME ...
DELNAM . .
ASAT T e
&ATTTL .. e
&ATTVL e
DLATT ..

GRIPDebuggerccviiiiiiiinnrenrenscescescassonsonss
GRIP Debugger oo
Running a Program with the Debugger
Set Breakpoints
Clear Breakpoints,
List Optionsoininii e

Final Projectco0iiitiiiitinnneeensesenscsnnssannas
Activity: Creatinga SpurGear

Statement Format Summaryccoitiireeecnacannonss
GPA Symbol Format Summarycceiiieiieenncenconss
EDA Symbol Format Summaryccciviieiieenacannans
Word/Symbol Listciiuiiiiiiiiniinecnecaocensannns

vi

GRIP Fundamentals ©EDS
Student Guide All Rights Reserved

|
- DO O N D LN

m S Q0 ?UUUUUWWU!

Unigraphics NX 2

Introduction

Introduction

Course Overview

The GRIP Fundamentals Course teaches the concepts of the Unigraphics
Graphics Interactive Programming (GRIP) language.

How to Use this Book

This student guide is intended to be the classroom workbook. It is not intended
to be a complete reference. For full reference detail consult the UG/Open GRIP
Reference Manual.

This workbook is arranged as a series of lessons. Each lesson starts with general
concepts and builds to detailed concepts. Each concept, whether it introduces a
GRIP command or theory, includes a description of the concept, the command
for the particular application, and an illustration of the concept. Examples and
sample programs in this workbook demonstrate these concepts.

GRIP

GRIP is a software package developed by Unigraphics Solutions. GRIP is used to
create FORTRAN—like programs to operate the Unigraphics system. Many
operations that can be performed interactively can be performed by using a
GRIP program. Commands are available to create geometric and drafting
entities, control preferences, perform file management functions and modify
existing geometry. GRIP also provides interactive commands. These commands
display messages in a motif dialog, allowing the user to interact with a GRIP
program while it is running. The messages displayed by these commands can be
programmed to fit the user’s specific needs. There are interactive commands to
control entity selection, menu option selection, data entry, text entry and the
Generic Point Subfunction.

©EDS GRIP Fundamentals -1
All Rights Reserved Student Guide

Introduction

GRIP Applications

GRIP/Unigraphics

Special Geometric Functions
Calculation and Analysis

Part Standardization
Family—of—Parts Programming
File Management

Data Access

GRIP N/C Machining

Basic Machining
Planar Milling
Surface Milling
Lathe Machining

GRIP/Finite Element Modeling

Node Creation and Editing
Element Creation and Editing
Mesh Node/Element Creation
Mesh Definition by Surface
CNL Creation

Node/Element Transformations

=2 GRIP Fundamentals ©EDS
Student Guide All Rights Reserved

Unigraphics NX 2

Introduction

Intended Course Objectives

Audience

This training manual e
is for students in the
GRIP

Fundamentals °
class.
Prerequisites °

The student should
be familiar with
Unigraphics and

its file naming °
conventions, and
with fundamental o
programming
techniques. °

Create programs using a variety of GRIP commands and data
types.

Automate the construction of 2D wireframe and 3D solid
geometry.

Organize program execution using logical statements and
branching commands in conjunction with appropriate error
handling techniques.

Develop user interfaces that request data.

Examine and edit data stored in a Unigraphics part file.

Copy and move geometry using transformations.

Use string and mathematical functions.

Create and use subroutines to manage program complexity.
Effectively use the GRIP Debugger to reduce development time.
Create and modify drawings.

Create notes, labels, and dimensions.

©EDS GRIP Fundamentals -3
All Rights Reserved Student Guide

Introduction

-4

GRIP Fundamentals
Student Guide

(This Page Intentionally Left Blank)

©EDS
All Rights Reserved

Unigraphics NX 2

GRIP Development Process

GRIP Development Process

Lesson 1 /777,
/ /
/ 17
A,
Objectives

e Demonstrate an understanding of the rules for creating source files
and file extensions used for GRIP programs.

e Run GRIP programs.
e Use an editor to create and edit GRIP source code.

e Recognize and fix compilation errors; then successfully compile, link,
and run a GRIP program.

©EDS GRIP Fundamentals 1-1
All Rights Reserved Student Guide

GRIP Development Process

File Naming Conventions

77

/ 17 A prerequisite for this class is that you are familiar with Unigraphics and

Y, Unigraphics file naming conventions. Table 1—1 lists the file types and file
extensions associated with GRIP files.

Table 1-1 GRIP File, File Name Extension, and File Type

GRIP File File Name* and File Type
Extension

Source Code name.grs Text

Object Code name.gri UGII

Executable Code name.grx GRXI

*In Table 1—1 above, the word “name” refers to any name assigned to a program.

Creating a GRIP Program
Follow these steps to create and run a GRIP program:

1. Develop and input the source file for the GRIP program using an
editor.

2. Once the source file has been created, compile the GRIP program. The
GRIP compiler converts the GRIP source file (.grs extension) into a
GRIP object file (.gri extension).

3. After compilation has been successfully completed, use the Link
option to link the GRIP object file. This combines the main program
with all the subprograms (if any) and creates a GRIP execution file
(.grx extension).

4. The GRIP execution (.grx) file can now be run interactively after
entering Unigraphics or through GRIP batch processing.

1=2 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

GRIP Development Process

Program Development using GRADE

72,
The development of a GRIP program or subprogram begins when the source file 7 17
is created. The source file consists of statements, labels, and comments ///A

arranged in a logical manner to perform various tasks.

This file is created by using an operating system editor, typically after entering
GRADE, the GRIP Advanced Development Environment. GRADE facilitates
editing, compiling, and linking to the create a GRIP executable file. The
executable file can then be run after entering Unigraphics or by using GRIP
batch.

GRIP Advanced Development Environment (GRADE) is a separate, executable
program that allows a variety of GRIP program development functions to be
performed from the operating system. These functions include those on the
menu below:

GRIP Advanced Development Environment

1) Edit 6) send Output to [CRT]
2) Compile 7) comPile listing [ALL]
3) Link 8) change ediTor [vi]
4) change Directory 9) grade Batch
5) liSt directory 0) turn Menu on/off

q) QUIT

The GRADE commands can be invoked in one of two ways, either by entering
the number or upper case character for the desired option. For instance, the
Link option can be used by entering either a “3” or a “L’.

©EDS GRIP Fundamentals 1-3
All Rights Reserved Student Guide

GRIP Development Process

Edit
2,
/ 17 GRIP Advanced Development Environment
Y,
1) Edit 6) send Output to [CRT]
2) Compile 7) comPile listing [ALL]
3) Link 8) change ediTor [vi]
4) change Directory 9) grade Batch
5) liSt directory 0) turn Menu on/off
q) QUIT

To Edit, enter a “1” or an “E”. This will invoke the specified operating system
editor after the file name is specified.

Enter the file name using the following guidelines:

e The file name may contain up to 26 characters before the “.grs”
extension.

e Any alpha or numeric character may be used.

e The characters “—”, and “_” are permitted. All other special characters
should not be used.

When editing the source file through GRADE, the “.grs” file extension will
automatically be added to the entered file name. Alternatively, if the source
file is created directly from an operating system prompt, be sure to specify the
“.grs” extension in the file name, so that it will be properly recognized as a
source code file.

GRIP Fundamentals ©EDS Unigraphics NX 2
1-4 Student Guide Al Rights Reserved grap

GRIP Development Process

Compiling

71,
Once editing is complete and the GRIP source file is created, it can then be / 17
compiled. Y,

Several things happen during the compilation process. First the GRIP compiler
converts the GRIP source file (program or subprogram) into an object file (.gri
extension). Each line of the GRIP source file is analyzed and a listing is
generated which consists of statements, labels, variables and any errors
recognized by the compiler. If the GRIP source file compiles without errors, the
object file is automatically created and filed in the current directory. If errors
exist, the object file is not created. Finally, the compiler lists the number of
subprograms that were either compiled without error or failed compilation. If
the program(s) failed compilation, the name(s) of the program(s) that failed
will be listed.

GRIP Advanced Development Environment

1) Edit 6) send Output to [CRT]
2) Compile 7) comPile listing [ALL]
3) Link 8) change ediTor [vi]
4) change Directory 9) grade Batch
5) liSt directory 0) turn Menu on/off

q) QUIT

To compile, select option “2” or “C” on the GRADE menu. This starts the
compile operation.

If a file name has been previously entered, this file name will be assumed as the
default file name. A file name may also be entered, if it is not desired to
compile the current file.

Multiple files can be compiled by specifying a file name using the “*” character
as a template. For example, if all source files in a directory are to be compiled,
enter a file specification of “*.grs”.

©EDS GRIP Fundamentals 1-5
All Rights Reserved Student Guide

S
Y ”
1 7

Y,

GRIP Development Process

After compiling the source file, a listing may be displayed of the GRIP source
statements, variable storage locations, labels, errors, etc. or a listing of the

errors only. To toggle between a complete listing and an errors only listing, use
option “7” or “P” as indicated on the following GRADE menu. The default is
to list all of the compiler output.

GRIP Advanced Development Environment

1) Edit 6) send Output to [CRT]

2) Compile 7) comPile listing [ALL]

3) Link 8) change ediTor [vi]

4) change Directory 9) grade Batch

5) liSt directory 0) turn Menu on/off

q) QUIT

On the following page is a typical listing of a successful compilation. An
explanation of the information in the listing is provided below:

e Notice that the heading shows the program name and compiler
version.

e The program listing appears with each line of the source code
numbered (Option 7 was set to ALL).

e Following the program listing, the name, type, address, and dimensions
of the variables will appear.

e Next the description of the processing of the information appears.

e The program ends with a “HALT” statement.

e The listing of the number of errors, the program size and the data size
appears for each program compiled.

e Finally, the number of programs compiled without errors and number
of programs that failed compilation along with a list of those programs
which failed compilation is provided.

At the end of this Lesson, you will complete an exercise to practice the GRIP
Development Process after editing a program which contains compilation
errors.

1—6 GRIP Fundamentals ©EDS

Student Guide

All Rights Reserved

Unigraphics NX 2

GRIP Development Process

Sections of a GRIP Compiler Listing

1. Heading:

2. Body of
Program:

3. Comments:

4. Declarations:

5. Halt
Statement:

6. Compile
information;

7. Errors,
Program Size
and Data Size:

UNI GRAPHI CS GRI P COWPI LER, REV 06

PROGRAM : gf _sheet
1 $3TSFTTFTTSITSITTFITTSITEIFTSITSITS$$EES
2 %%
3 $%$ Description: This program creates
4 $$ 2—di nensi onal geonetry
5 $$ to represent a part edge
6 %% and a bolt
7 $%
8 FITTIITTITTFITTSITTSITTSFFEPITSITSITS$$$ES
9
10 ENTITY/ edge(4), bolt(2), e_group, b_group
11
12 $%
13 $$ Create the edge.
14 $%
15
16 edge(l) = LIN® -1, -.5, 1, -.5
17 edge(2) = LIN® 1, -5, 1, .5
18 edge(3) = LIN® 1, .5, -1, .5
19 edge(4) = LIN® -1, .5, -1, -.5
20 e_group = GROUP/ edge(l..4)
21
22 $%
23 $$ OCreate the bolt.
24 $$
25
26 bolt(l) = CIRCLE/ 0, 0, .5
27 bolt(2) = CRCLE 0, 0, .25
28 b_group = GROUP/ bolt(1..2)
29
30 HALT
NANMVE TYPE ADDR DI M
EDGE ENT ARRAY 0 4
BOLT ENT ARRAY 4 2
E_GROU ENTI TY 6
B_GROU ENTI TY 7
0 ERRORS, PROGRAM = 162, DATA = 8

UNI VERSAL LI NK FILE

©EDS GRIP Fundamentals 1-7
All Rights Reserved Student Guide

S
Y ”
1 7

Y,

GRIP Development Process

Errors

Program error messages may appear on the screen after attempting to Compile,
Link or Run. Types of GRIP error messages are listed below. You can find a
complete list of error messages listed in the UG/Open GRIP Reference Manual.

If your GRIP source file compiles without errors, the object file is automatically
created and you return to the Grade menu. If errors exist, the object file is not
created and a message indicating the number of files that failed compilation is
displayed. You must then Edit the program(s) and correct the errors.

Error Range

Error Type

1-99

Non-—fatal compilation errors. Compilation
continues but object code cannot be filed.

100—-199

Fatal compilation errors. Compilation is halted.

500—-599*

Compiler system errors.

600—699*

Interpreter system errors.

1545000—
1545999

Non—fatal execution errors. Program execution
may be continued.

1549000—
1549999

Fatal execution errors. Program execution is
halted.

NOTE *Errors numbered 500—699 indicate a malfunction in
Unigraphics and should be reported to Unigraphics
Global Technical Access Center (GTAC). The toll free
telephone number is: 1-800—955-0000. You can also
report problems via the World Wide Web. The site is
http://support.ugsolutions.com. You must have a BBS
account to log a problem report through the website.

1-8 GRIP Fundamentals
Student Guide

©EDS 1 1
All Rights Reserved Unigraphics NX 2

GRIP Development Process

Linking

7
As soon as compilation has been successfully completed, the executable / 17
program must be created through linking. ///A

GRIP Advanced Development Environment

1) Edit 6) send Output to [CRT]
2) Compile 7) comPile listing [ALL]
3) Link 8) change ediTor [vi]
4) change Directory 9) grade Batch
5) liSt directory 0) turn Menu on/off

q) QUIT

Select GRADE option “3” or “L”.

The GRIP linker links the object file of a main GRIP program together with the
object file of any GRIP subprograms into an executable program (.grx
extension). During this process the system generates a listing which consists of
the main program name and the names of all subprograms (if any) in the order
in which they are referenced.

NOTE Linking is necessary even when all of the statements for a
program reside in one source code file.

Enter the name of the main program that is to be linked. As the linking process
proceeds, the system will produce a listing containing the name of the main
program, the names of all the subprograms that the main program calls, and
any linker errors. See the following example of this listing.

©EDS GRIP Fundamentals 1-9
All Rights Reserved Student Guide

S
Y ”
1 7

Y,

GRIP Development Process

Example 1—1. Linker Listing Without Errors

UNI GRAPHI CS 1-16-96
GRI P LINK LI ST

PROGRAM NAME PROG PROG DATA DATA
SECT DI SP SECT DI SP

FLOWCHART 0 0 O 245
| NTERACTION O 315 1 140
PROCESS 1 248 2 99
OFF—PAGE 2 248 3 404
DECI SI ON 4 194 5 86
SPECI AL 5 239 6 131
GUI DELI NE 6 255 6 442

LI NKI NG COVPLETE

PROGRAM SI ZE =0006 0491
| NTERACTI VE EXECUTI ON FI LE

***1 GRIP PROGRAM'S) LI NKED W THOUT ERROR

Running a Program

After the GRIP program links without errors, the executable module will be
automatically filed. The program can be run in either in the interactive mode
or in the batch mode to create the output of the program.

To run a program interactively, select the following sequence of options starting
at the Unigraphics menu bar:

File —>Execute UG/Open —>Grip

A File Selection menu will be displayed with a list of all GRIP executable files.
After the desired selection is made, the program will begin execution.

NOTE The execution of a GRIP program may require an active
Unigraphics part. Therefore, the selected program may
not execute properly without first activating a part.

1-10

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

GRIP Development Process

Activity: Sample GRIP program with errors

/4

/
717

/
Study the program below and determine where you would have to edit the ZL
program to remove errors.

Hints: o Fix all typographical errors. Look at program statements similar to the
one that has the errors for correct spelling.

e Look for missing or extra delimiters. These include commas and
parentheses. A single missing character can cause several errors.

e Look for a missing continuation character, “$”. Without this character,
the lines after it will error and so will the statement that would have
contained the “$”.

UNI GRAPHI CS GRI P COWPI LER, REV 06

PROGRAM :

O©CoO~NO U, WNBE

R
N RO

Error no.
13
14
15
16
17
18
19
20

Error no.
21

Error no.
22
23
24
25

sanpl e_bad

$$ DECLARE THE ENTI TY NAMES TO BE USED | N
$$ THE PROGRAM

ENTI TY/ E(20) , TMP(5)
NUVBER! X0, YO, Z0, WD, HT, TH, RL, R2, R3

$$ DEFINE X Y Z VALUES TO LOCATE THE ORI G N OF THE HANDLE
$$ DEFINE THE X Y Z VALUES TO BE USED TO CONSTRUCT THE HANDLE

DATA/ X0, 1, Y0, 1. 5, 20, 0
DAAT/ WD, 5, HT, 2. 5, R1, . 25, R2, . 5, R3, . 25, TH, . 5
*
15 in line no. 12: Expression on |left of equal sign.
$$
$$ DI SPLAY/ VERI FY DI MENSI ONS:
$$ (ALSO CHECK FOR ERRORS)
$$
BCK010:
PARAM ' HANDLE CONSTRUCTI ON* DI MENSI ONS' |, $
"XC , X0,’'YC,Yo0,’ZzC , Z0,
"HEl GHT' , HT, " WDTH , VWD, $
*

1inline no. 20: Syntax error.
" THI CKNESS' , TH, RESP
*

1inline no. 21: Syntax error.
JUMP/ CANCEL: , CANCEL: , RESP
$$
$$ ERROR CHECKI NG
$$ (SET LIM TS FOR CONSTRUCTI NG A GOOD HANDLE)

©EDS GRIP Fundamentals 1-11
All Rights Reserved Student Guide

S
Y ”
1 7

Y,

GRIP Development Process

1-12

26 $%$
27 | FTHEN TH<R1*2 OR TH>R2*2
28 MESSG ' | NVALI D THI CKNESS' | $
29 " (MJUST BE +FSTR(R1*2) +' <=T<=' +FSTR(R2*2) +")"’
30 JUWP/ BCKO10:
31 ELESI F/ HT<1. 5
*
Error no. 15 in line no. 31: Expression on left of equal sign.
32 VESSG ' | NVALI D HEI GHT' ,’ (MUST BE >=1.5)’
33 JUWP/ BCKO10:
34 ELSEI F/ WD<3. 5
35 MVESSG ' | NVALI D HEI GHT' , ’ (MUST BE >=3.5)’
36 JUWP/ BCKO10:
37 ENDI F
38 $%$
39 $$ DEFINE THE GEOMETRY:
40 $$ (START AT LOWER LEFT ARC AND WORK AROUND
41 $$ COUNTER-CLOCKW SE) .
42 $%
43 E(1) =Cl RCLE/ X0, YO, Z0, R2, START, 100, END, 80
44 E(3) =LI NE/ (X0+TH 2), YO, Z0, (X0+TH 2), YO+HT, Z0
45 E(5) =LI N/ X0, (YO+HT), Z0, (X0+WD) , (YO+HT),
*
Error no. 1 in line no. 45: Syntax error.
46 E(7)=LI N (X0O+WD-TH/ 2), YO, Z0, (XO+WD-TH/ 2), YO+HT, Z0
*
Error no. 1 in line no. 46: Syntax error.
47 E(9) =Cl RCL/ (X0+WD) , YO, Z0, R2, START, 100, END,
*
Error no. 1 in line no. 47: Syntax error.
48 E(11) =LI NE/ PARLEL, E(7), XLARCE, TH
49 E(13) =LI NE/ PARLEL, E(5), YLARCE, TH
50 E(15) =LI NE/ PARLEL, E(3) , XSMALL, TH
51 $$
52 $$ CONSTRUCT TEMPORARY PO NTS FOR FI LLETI NG
53 $$
54 TMP(1) =PNT/ (X0+WDY 2), (YO+R2),Z0 $$ FOR | NSI DE FI LLETS
*
Error no. 1 in line no. 54: Syntax error.
55 TMP(2) =PO NT/ (XO+WD+TH) , (YO+R2),Z0 $$ FOR RI GHT OUTSI DE
56 TM 3) =PO NT/ (X0-TH), (YO+R2) , Z0 $$ FOR LEFT OUTSI DE
*
Error no. 1 in line no. 56: Syntax error.
57 $$
58 $$ NOW CONSTRUCT FI LLETS:
59 $$ (CLOCKW SE AROCUND QUTSI DE QUTLI NE, TOO
60 $$
61 E(2) =FI LLET/ E(3), E(1), CENTER, TMP(1), RADI US, R3
62 E(4) =FI LLET/ YSMALL, E(5), XLARGE, E(3), RADI US, R3,
63 E(6) =FI LLET/ XSMALL, E(7), YSMALL, E(5), RADI US, R3
64 E(8) =FI LLET/ E(9), E(7), CENTER, TMP(1), RADI US, R3
65 E(10) =FI LLET/ E(11), E(9), CENTER, TMP(2) , RADI US, R3
66 E(12) =FI LL/ XSM_L, E(11), YSMALL, E(13), RADI US, R3+TH
*
Error no. 1 in line no. 66: Syntax error.
GRIP Fundamentals

Student Guide

©EDS 1 1
All Rights Reserved Unigraphics NX 2

GRIP Development Process

Error

Error

Error

67

no.

68

no.

69
70
71
72
73
74

no.

E(14) =FI LL/ YSM.L, E(13), XLARGE, E(15), RADI US, R3+TH
*
1inline no. 67: Syntax error. /////4
E(16) =FI LL/ E(1), E(15), CENTER, TMP(3), RADI US, R3 71 /
* /
1inline no. 68: Syntax error. ///A

DELETE/ TMP(1..3) $$ CLEAN TEMP PQ NTS

$$
$$ PUT HOLES | N HANDLE, AND GROUP | T ALL:
$$

E(17) =Cl RCLE/ X0, YO, Z0, R1

E18) =Cl RCLE/ (X0+\\D) , YO, Z0, R1

*

11 in line no. 74: Unbal anced parentheses in an arithnetic

expr essi on.

Error
Error
Error

NANE
E

™

X0

YO

20

WD

HT

TH

R

7]

R3
DAAT
BCKO10
CANCEL
RESP
ELESI F
LI N

Cl RCL
PNT

™
FILL
XSMLL
YSMLL
E18

75
76
77
78

no.
no.
no.

GROUP/ E(1. . 18)
$$
CANCEL:
HALT
70 PARAM at argunent no. 8 in line no. 18: Invalid field

71 (FILLET) in line no. 62: Too many fields.

58 in line no. 68: Illegal use of division
TYPE ADDR DI M
ENT ARRAY 0 20
ENT ARRAY 20 5
NUMBER 25

NUMBER 27

NUMBER 29

NUMBER 31

NUMBER 33

NUMBER 35

NUMBER 37

NUMBER 39

NUMBER 41

NUMBER 43

LABEL 6

LABEL 703

NUMBER 73

NUMBER 93

NUMBER 119

NUMBER 121

NUMBER 123

NUMBER 125

NUMBER 127

NUMBER 129

NUMBER 131

NUMBER 133

16 ERRCRS, PROGRAM = 708, DATA = 135

*** 0 GRI P PROGRAMS COWPI LED W THOUT ERROR
*** 1 GRI P PROGRAM FAI LED COWPI LATION, ITIS:
sanmpl e_bad. grs

©EDS GRIP Fundamentals 1-13
All Rights Reserved Student Guide

GRIP Development Process

A

B

Y,

(This Page Intentionally Left Blank)

GRIP Fundamentals ©EDS igraphics NX 2
1-14 Student Guide Al Rights Reserved Unigraphics N

GRIP Development Process

Activity: Edit a GRIP program

/4

/
717

Y,

This exercise is designed to provide you practice in editing a GRIP program.
Edit the program on the following page to match the program that faces it.

Follow these instructions:

1 Make a copy of the file using your initials.

(UNI' X conmand: cp parts/gf-intro.grs
I ***-gf-intro.grs)
Your instructor will discuss this step with the class.

Enter GRADE and edit the file you copied.

Use editing commands as needed to modify the program to
be like the one on the facing page.

After all edits are complete, save the file.

Compile the program. NOTE: You may need to re-enter
the file using the editor to make corrections if there are
compilation errors.

Link the program.

Enter Unigraphics, create a new part file, and execute the
program.

©EDS GRIP Fundamentals 1-15
All Rights Reserved Student Guide

GRIP Development Process

xxx—intro.grs (original)

/44
/ 17 The program below is the unedited version for the gf—intro activity.
2,

$$ PROGRAM NAME: gf—intro

$$ AUTHOR: STAFF

$$ CREATI ON DATE: MAY 1999

$$ RELEASE: UG NX

$$ PART ACTI VE: YES
$$ SUBROUTI NES: NONE
$$ ABSTRACT: I NTRCDUCTI ON TO GRI P

$$ khkhkkhkhkhkhkhhhkhhhkhhkhhkhkhkhrkkhkrxx*

$$ DECLARATI ON AND | NI TI ALI ZATI ON

$$ khkhkkhkhkhhkhkhhhkhhhkhhhhhkhhkhkrrhkrxkx*

$$
$$
$3 Interactive pronpt to ask user to |ocate a note
$$
BCKO010

GPOS/ ' Specify a Position' ,$

X, Y, z, resp

JUWP/ BCKO10: , 2727, ,,,resp
$$
$3 Interactive pronpt to ask for student name
$$
BCK020

TEXT/ XXXXXXXXXXXXXXXXX, S_nane, resp, DEFLT

JUMP/ BCKO10: , 277, ,,,resp
$$
$$ Set character size to .25
$$

&CSI| ZE=. 25
$$
$$ Set nodul e paraneters for entity site to be md-center
$$

&ENSI TE=&M DC
$$
$3 Create a note and place it in the center of the screen
$$

welc_note = NOTE/x, vy, $

"<C2> + s _nanme + $
"<Cl> Welcone to the <C3><F3>GRIP 1<C<F> CLASS

$$
$$ AUTO MAX M N THE VI EW
$$

VI EWE/ AUTO
ENTI TY/ XXXXXXXXX $$ nove this line to after DECLARATION and | NI TI ALI ZATI ON
STRING s_nane(30) $$ nove this line to after DECLARATION and | NI TI ALI ZATI ON
NUMBER/ x, vy, z, resp $$ nove this line to after DECLARATION and | NI TI ALI ZATI ON
777

HALT
1-16 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

GRIP Development Process

xxx—intro.grs (solution)

71,
The program below is the solution for the gf—intro activity / 17
.
$$ PROGRAM NAME: gf-intro
$$ AUTHOR STAFF
$$ CREATI ON DATE: MAY 1999
$$ RELEASE: UG NX

$$ PART ACTI VE: YES
$$ SUBRQUTI NES: NONE
$$ ABSTRACT: I NTRCDUCTI ON TO GRI P

$$ khkkhkkhkhkhkhkhhhkhhhhhhkhkhkhrkkhkrxx*

$$ DECLARATI ON AND | NI TI ALI ZATI ON

$$ khkkhkkhkhkhkhkhhhkhhhkhhhhkhkhhhkrkhkkrxx*

$3
ENTI TY/ welc_note $$ nove this line to after DECLARATION and | NI Tl ALI ZATI ON
STRI NG s_nane(30) $$ nove this line to after DECLARATI ON and | NI Tl ALI ZATI ON

NUMBER/ x, vy, z, resp $$ nove this line to after DECLARATION and | NI TI ALl ZATI ON
$$
$3 Interactive pronpt to ask user to |ocate a note
$$
BCK010:
GPOS/ ' Specify a Position' ,$
X, Y, z, resp

JUMP/ BCKO10: , CANCEL: ,,,,resp
$$
$$ Interactive pronpt to ask for student name
$$
BCK020:

TEXT/’ Enter Your Nane Pl ease’,s_nane, resp, DEFLT

JUMP/ BCKO10: , CANCEL: ,,,,resp
$$
$$ Set character size to .25
$$

&CSI ZE=. 25
$$
$3 Set nodul e paraneters for entity site to be md-center
$$

&ENSI TE=&M DC
$$
$3 Create a note and place it in the center of the screen
$$

welc _note = NOTE/x, vy, $

"<C2> + s _nanme + $
"<Cl> Welcone to the <C3><F3>GRIP 1<C<F> CLASS

$$
$$ AUTO MAX M N THE VI EW
$$

VI EWE/ AUTO
CANCEL:

HALT

©EDS GRIP Fundamentals 1-17
All Rights Reserved Student Guide

GRIP Development Process

A

B

Y,

(This Page Intentionally Left Blank)

GRIP Fundamentals ©EDS Unigraphics NX 2
1-18 Student Guide Al Rights Reserved grap

GRIP Language Components

GRIP Language Components

Lesson 2
Objectives
e Demonstrate knowledge of the style used to explain the GRIP
language in the student guide. ://2//;
e Demonstrate knowledge of the components of the GRIP ;////:
language.

e Demonstrate knowledge of how a typical GRIP program is
structured.

e Use initialization statements available in a GRIP program.

©EDS GRIP Fundamentals 2-1
All Rights Reserved Student Guide

GRIP Language Components

GRIP Program Organization

A GRIP source program is composed of a series of statements in the GRIP
language. Generally, a GRIP program can be organized into five major areas
listed below. Each area has related GRIP language commands.

GRIP Program Outline

Declaration Statements

ENTITY/

v NUMBER/

5 2 / STRING/

/

7 e e e
Initialization Statements
DATA/
Assignments

Numeric (A=3)
String (usr_name = ’Pat Smith’)

Interactive Statements

PARAM/
TEXT/
GPOS/
etc.

Processing Statements

POINT/
LINE/
CIRCLE/
DELETE/
etc.

Termination

HALT

This lesson will provide a general focus on all five areas of a GRIP program, with
detailed discussion of the first two areas, declaration and initialization
statements.

GRIP Fundamentals ©EDS Unigraphics NX 2
2-2 Student Guide Al Rights Reserved grap

GRIP Language Components

GRIP Command Structure

Each line of a GRIP statement may contain no more than 80 characters. A single
command may be split between several lines, thus creating a multiple line
command. This is done by using the continuation character ($) at the end of
each line of the multiple line command, remembering that each line can
contain no more than 80 characters.

CAUTION When the command is separated close to a comma (,) the

comma must appear at the end of the line to be continued, before the S,

continuation character ($). This is illustrated in the example below: 72
/

Example 27

FI LLET/ XSMALL, linel, YLARGE, line2, RADIUS, $
.5, NOTRI M

You may use blank characters (spaces) to separate the major and Minor words
and variables in a command line.

©EDS GRIP Fundamentals 2-3
All Rights Reserved Student Guide

/e

/
/ /

/ 4
Y,

GRIP Language Components

GRIP Vocabulary

There are four types of GRIP reserved vocabulary words:

Example

&ENTCLR = &YELLOW

Inl = LINE/ 0, 0, 0, 10, 0, 0

In2 = LINE/ PARLEL, In1, YSMALL, 12
&COLOR(In2) = &GREEN

A complete categorized list of the GRIP vocabulary words is provided in the
Appendix. These vocabulary words should be treated as reserved words.

Major Words

GRIP command words, usually followed by the slash (/) character. In Example
2—2, LINE is a major word.

Some Major words are:
CALL, DELETE, ClI RCLE, LINE, PARAM HALT

Minor Words

Command modifiers used in conjunction with major words which describe
various options available for a particular command. Minor words always follow
the slash (/) character in the command line. In Example 2—2, PARLEL and
YSMALL are minor words.

Some Minor words are:
ANGLE, ARROW PARLEL, START, END, | NTOF

Global Parameter Access Symbols (GPA’s)

Enable various preferences which control the Unigraphics environment to be
set. GPA’s are always preceded by the ampersand (&) character. In Example
2-2, &ENTCLR is a GPA.

Some GPA’s are:
&UNI T, &ACTPRT, &FONT

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

GRIP Language Components

Entity Data Access Symbols (EDA’s)

Enable information about entities to be extracted or edited. Like GPA’s, EDA’s

are always preceded by the ampersand (&) character. In Example 2—2,
&COLOR, &YELLOW, and &GREEN are EDAs.

Some EDA’s are:
&LAYER, &COLOR, &POA NT, &FONT

/e

/
/ /

/ 4
Y,

©EDS GRIP Fundamentals 2-5
All Rights Reserved Student Guide

:////,

/

/ 4
Y,

GRIP Language Components

Conventions Used in this Manual

This manual describes GRIP statements using a shorthand convention that
makes the statements easier to understand.

e GRIP vocabulary words are written in upper case letters.

e Numerical values and variables or expressions are written in lower
case letters.

Example
Actual Statement In This Book
SQRTF(B) SQRTF(num
STORE/ 3, A-11. 3 STORE/ r eg, num
e Some of the GRIP statements have optional information. These
optional fields are indicated by enclosing the field in square brackets.
Example
PO NT/ x, y[, z]
Example
FI LLET/ PMOD3, | i nel, PMOD3, | i ne2, RADI US, $
r[, NOTRIFM
e Some statements have a choice of several possibilities in a specific
field. These are indicated by placing the options in curly braces with
vertical slashes (|) between. This convention means that you must
select one of the options indicated between the vertical slashes from
within the braces.
Example
FONT/ { SOLI D| DASH| PHANTM CENTER}
The example shown above is how the manual would describe a GRIP statement
but not the way you would write a statement in a program.
The GRIP language is not case sensitive so code can be written in either upper
case or lower case. For clarity, it is recommended that you use the same
convention used in this manual, with GRIP vocabulary words in upper case and
user-defined variables in lower case.
2—6 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

GRIP Language Components

Declaring Variables

Declaration statements are used to assign variables. The declaration
statements reserve space in memory to store data in a GRIP program.

NOTE Declaration statements must precede the first line of

executable code.

GRIP has the following three types of variables:

ENTITY/ is used for geometric elements and other data created by
Unigraphics.

STRING/ is used for storing character data.

NUMBER/ is used for storing both integer and real numerical data.

The rules for naming variables are listed below:

The name cannot exceed 32 characters.

The first six characters must be unique, i.e., cannot be the same as the
first six characters of another variable name.

The first character must be alphabetic, with the remaining characters
alphanumeric.

Characters may not be punctuation marks.

The name should not be one of the reserved words.

Numeric Variables

The NUMBER word declares variables and arrays with up to three dimensions.
GRIP does not distinguish between integer and real data. All numbers are
stored in GRIP as double precision. Numbers can be used as if they were

integers.

All subscripted arrays must be declared. Any variable used in a GRIP program
but not declared as ENTITY, STRING or NUMBER is assumed to be a
NUMBER. A GRIP switch can be used to override this default assumption.

©EDS GRIP Fundamentals 2-7
All Rights Reserved Student Guide

777
;2
7,

GRIP Language Components

There are two types of numerical variables, simple and subscripted.

e Simple Variable

This variable does not have to be declared in the NUMBER/
statement but it is a good practice to do so.

Example

In the following example, S3=15. Also, S1, S2, and S3 are
three distinct variables.

; S1=5
;////2 S2=3
777 S3=S81*S2

e Subscripted Variable

This is a numerical array of elements in one, two, or three
dimensions. Arrays let you store several items of related
information in a convenient fashion. This variable must be
declared in the NUMBER statement.

In a declaration statement, a constant subscript within parenthesis indicates the
array dimension. When the array is referenced throughout the code, a
subscript indicates which portion of the array is being used in the GRIP
statement. Throughout the code, the subscript may be a numerical value,
expression, or subrange enclosed in parenthesis.

Example

In the following example, T is a one dimensional array
consisting of three variable elements: 5, 3, and 15.

NUVBER/ T(3)
T(1)=5

T(2)=3
T(3)=T(1)*T(2)

GRIP Fundamentals ©EDS Unigraphics NX 2
2-8 Student Guide Al Rights Reserved grap

GRIP Language Components

Example One Dimension Variable Array
Format: NUMBER/Variable Name (Column)
NUMVBER/ NIVS(10)

NVB(1) =2. 1
NVB(2) =5. 6
NVE(3) =7. 8
NVB(4) =9. 2

;2

y /

1 2 3 4 5 6 7 8 9 10 ///A

NMS 21| 56| 78| 92| O 0 0 0 0 | 29

Figure 2—1 Graphic Illustration of a One Dimensional Variable Array
Example Two Dimensional Variable Array
Format: NUMBER/Variable Name (Column, Row)
NUVBER/ NVS(5, 2)

NVB(1,1) = 2.1
NVB(2,1) = 7.8
NVB(1,2) = 5.6
NVB(2,2) = 9.2

NVB(5,2) = 2.9

Figure 2—2 Graphic Illustration of a Two Dimensional Variable Array

©EDS GRIP Fundamentals 2-9
All Rights Reserved Student Guide

GRIP Language Components

The terms column and row are conventions to describe a useful picture of a two
dimensional array. You can use different terms and different pictures as long as
you remember that GRIP assigns and stores values in arrays by varying the
rightmost subscript most rapidly. It is important that you understand this
principle when you use DATA/ to initialize an array.

Example Three Dimensional Variable Array
Format: NUMBER/Variable Name(Column, Row, Depth)

NUMVBER/ A, N(4, 3, 2)
DATA/N, 1,2, 3,4,5,6,7,8,9, 10, 11, 12, 13, $

2944? 14,15, 16, 17, 18, 19, 20, 21, 22, 23, 24
;2) PRI NT/ N(3, 2, 2)
77 PRI NT/ N(1, 3, 1)

A= N4 2 1) + N1, 3,2)

PRI NT/ A

HALT

Results of Print Commands

16. 00
5. 00
27.00

Depth Storage Format

Depth#1
COL#1 COL#2 COL#3 COL#4
ROW#1 1.00 7.00 13.00 19.00
ROW#?2 3.00 9.00 15.00 21.00
ROW#3 5.00 11.00 17.00 23.00
Depth#2
COL#1 COL#2 COL#3 COL#4
ROW#1 2.00 8.00 14.00 20.00
ROW#?2 4.00 10.00 16.00 22.00
ROW#3 6.00 12.00 18.00 24.00

Figure 2—3 Data Storage Format

GRIP Fundamentals ©EDS Unigraphics NX 2
2-10 Student Guide Al Rights Reserved grap

GRIP Language Components

Table 2—1 Three Dimensional Array Data Assignment Table

N(1,1,1) = 1.00

N(1,1,2) = 2.00

N(1,2,1) = 3.00

N(1,2,2) = 4.00

N(1,3,1) = 5.00

N(1,3,2) = 6.00

N(2,1,1) = 7.00

N(2,1,2) = 8.00

N(2,2,1) = 9.00)
N(2,2,2) = 10.00 {%g9f
N(2,3,1) = 11.00 , 2
N(2,3,2) = 12.00 77
N(3,1,1) = 13.00

N(3,1,2) = 14.00

N(3,2,1) = 15.00

N(3,2,2) = 16.00

N(3,3,1) = 17.00

N(3,3,2) = 18.00

N(4,1,1) = 19.00

N(4,1,2) = 20.00

N(4,2,1) = 21.00

N(4,2,2) = 22.00

N(4,3,1) = 23.00

N(4,3,2) = 24.00

©EDS GRIP Fundamentals 2-11

All Rights Reserved Student Guide

777
;2
7,

GRIP Language Components

Entity Variables

The ENTITY declaration establishes variables and arrays with up to three
dimensions. An entity variable or array provides the ability to store and to
reference objects that are created by the program, selected by the user, or
accessed by cycling the data model.

Remember, you must make sure all declaration statements are before the first
executable statement in the program. Entity variables are declared as follows:

ENTITY/name
ENTITY/name(dim1[,dim2][,dim3]),name...

where “name” is the variable name of the entity, and
“dim1,dim2,dim3” define the array size.

If it is necessary for you to refer to a point (or any other entlty) again in the
program, you must give the point a name. This is called an “entity variable.”

Example

ENTI TY/ PT(3), LN4, P1, P2, LN3
PL = PONT/ 3, 1, 6

P2 = PONT/ 2, 4, 6

LN4 = LINE/ P1, P2

PT(2) = POONT/ 3, 0, O
PT(3) = PONT/ 4, 1, 2
LN3 = LINE/ PT(2), PT(3)

Notations such as P1, P2, and LN3, LN4 indicate single entities. There is no
need to use parentheses when referencing them in a program, since they have
not been declared using a subscript.

Notations such as PT(3) refer to multiple entities in arrays. PT(3) declares an
array called PT holding three spaces for entity values .

2-12

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

GRIP Language Components

String Variables

The STRING major word declares string variables and arrays with up to two
dimensions. A string is a sequence of characters used whenever text is required
in GRIP, such as in notes, dimensions, messages, etc.

STRING/NAME(n)
STRING/NAME(dim1[,dim2],n)

where: NAME is a variable name of the string and dim1,dim2
define the array size.

n is the number of characters in the string. n must be less than ,//2/ /j
or equal to 132. / ’
’ .

Example
Declaration of a string variable (TXT) and a 2 dimensional
string array (ST).

STRI NG TXT(11), ST(2, 2, 5)
TXT = ' WY DOG SPOT’

ST(2,2) = ' MY
ST(1,2) = ' JUNE
ST(1,1) = 'APRIL’

Figure 2—4 String Variable and Two Dimensional Arrays

©EDS GRIP Fundamentals 2-13
All Rights Reserved Student Guide

GRIP Language Components

In GRIP you may express a string in three ways:

1. String Literal

A sequence of characters enclosed in single quotes, with a
maximum of 132 characters.

Example
MESSG ' THI S I S A STRI NG LI TERAL’

displays the message on the dialog area.

/Y 2. String Variable

7 /

/

/ 27 You must declare a string by using the STRING/ declaration

7, before you can use it. You may assign a value to a string
variable by using the general format:

STRING VARIABLE = "STRING LITERAL

If it is not assigned, the content of the string is assumed to be
null.

Example

STRI NG A(5)

A = " LINES
NOTE/ 1,1, A

The variable A is declared a string, then assigned the value
"LI NES'.

The variable A can then be used in place of the string literal
"LI NES' throughout the rest of the program.

GRIP Fundamentals ©EDS Unigraphics NX 2
2-14 Student Guide Al Rights Reserved grap

GRIP Language Components

3. String Expression

You may use a string expression to set up a combination of
string literals, string variables and string—valued functions.
Strings may be added (concatenated) using the plus sign (+).

Example

STRI NG A(6), B(16)

A
B

' MY DOG ,
A + BLSTR(1) + ' HAS FLEAS ,////’

/ /
results in the string: Y,
B ='W DOG HAS FLEAS

BLSTR(1) is a string function which generates a one
character string of blanks (" '). You will learn about string
functions later in this student guide.

©EDS GRIP Fundamentals 2-15
All Rights Reserved Student Guide

GRIP Language Components

Initializing and Setting Variables

The DATA statement initializes the values of numerical and string variables.
The string and numerical variables included in a DATA/ statement must first be
declared using the STRING and NUMBER declarations. The initialization
occurs the first time a subroutine is executed but does not occur on subsequent
calls to that routine.

The data item list may consist of items of the following types:

Form Statement Example
i/ . .
727 string, ’string’ DATA/ STR, ' ENTER
Y string array STRI NG MES(2, 2, 6)

element, ’string’ DATA/ MES(1, 2),’ VALUES
num. var, value DATA/ X, 5

num. array, list NUMBER/ A(2)
DATA/ A, -1.2, 8

num. array NUMBER/ A(6)
element, value DATA/ A(3), 8

num. array, value NUMBER/ B(2)
DATA/ B, 3

The values assigned to numerical variables and arrays must be constants and
the subscripts used to specify array elements must also be constants. The
variable length subrange operation cannot be used in a DATA/ statement.

Example

The following example of statements assign * ENTER' to STR
-1,2,5t0 A(1),A(2), A(3) respectively, and 3 to B(1).

NUMBER/ A(3) , B(10)
STRI NG STR(50)
DATA/ STR ' ENTER , A, -1, 2, 5, B, 3

To check the amount of numbers, strings and entities that have
been declared, refer to the last line on the Unigraphics GRIP
compilation screen. The number after the word DATA/ gives the
amount of numbers, strings, and entities which have been
declared.

GRIP Fundamentals ©EDS Unigraphics NX 2
2-16 Student Guide Al Rights Reserved grap

GRIP Language Components

Assigning Values to String Variables

You have three ways to assign a value to a string variable:

1. Direct Assignment

STRI NG str1(20)
str1="NOTE: LI NES

Advantages: You can use anywhere

in the program. STRING/ must be

before the first executable line.

Disadvantages: You can only assign one variable at
a time. Occurs during Run which

slows processing

2. Data Statement Assignment

NUVBER/ NUM
STRI NG STR(10) , STR2(35)

DATA/ STR,’ THE NUMBER , NUM 0, $

STR2,’ |'S USED TO CALCULATE DI STANCE.’

Advantages: Assigns values during compile.

Disadvantages: Must occur directly after the
declaration statements.

3. Null Assignment

ENTI TY/ nm note
STRING str(30)

str = "Pat Smth’
nmnote = NOTE/ 1, 5, str
str = &NULSTR

&NULSTR is a GPA constant that can be used to assign a null value

to a string variable.

©EDS GRIP Fundamentals
All Rights Reserved Student Guide

2-17

777
;2
7,

GRIP Language Components

Assigning Values to Numeric Variables

Numeric variables declared in the “NUMBER/ ” statement are all initially zero.

Example

NUVBER/ A(3)
All three parts of array A are set to zero.

You have three ways to assign a value to a numerical variable:

v 1. Direct Assignment
;2] NUVBER/ A(3)
Y A(1)=7.125
A(2) =0

A(3) =1

Advantages: Can be anywhere in the program.

Disadvantages: Can only assign one variable at
a time. Occurs during Run
which results in slower processing.

2. Data Statement Assignment
NUVBER/ A(3) , B(3)
DATA/ A(1), 7.125,A(2),0,A(3),1,B,$
5,9.1,29.6

Advantages: Assigns value during Compile
which results in faster processing.

Can assign values to entire array two ways.
The assignment to B results:

B(1) =5
B(2)=9. 1
B(3) =29. 6

Disadvantages: Must occur directly after the
declaration statements.

Numerical values may be in exponential notation:
“Mantissa” E “exponent”

The mantissa can be a sign and up to 15 digits.
The exponent can be from —79 to +75.

GRIP Fundamentals ©EDS igraphics NX 2
2-18 Student Guide All Rights Reserved Unigraphics N

GRIP Language Components

3. Null Assignment

ENTITY/ nm_note
STRING/ str(30)
NUMBER/ loc_note(2)

str = ’Pat Smith’
nm_note = NOTE/ loc_note, str
loc_note(1) =0
loc_note(2) =0

Numbers can never really be “null” in GRIP. However, a zero
value can be used to assign a null value to a number variable.

Example

NUVBER/ A(3)
DATA/ A(1), 32. 3E-3 $$ A(1)=. 0323
A(2) =—. 1234E6 $$ A(2)=—123400

All numbers in GRIP are real.

Assigning Values to Entity Variables

There are three ways of assigning values to entity variables. The DATA/
statement is never used to initialize the value of entity variables.

1. Creating an Entity
ENTITY/ part_edge(4)

part edge(l) = LINE 0O, O, O, 1, 2, O
2. Reading the Identifier of an Entity

ENTITY/ nam_note
nam_note = &ENAME(1, ’drafter_name’, IFERR, LBL050:)

The EDA &ENAME is used to examine the Unigraphics data for the
first occurrence of the entity with the attribute name ‘drafter_name’.

©EDS GRIP Fundamentals 2-19
All Rights Reserved Student Guide

/e

/
/ /

/ 4
Y,

GRIP Language Components

777
;2
7,

3. Null Assignment
ENTI TY/ part _edge(4)

LINE/ O, O, O, 1, 2, O
&NULENT

part edge(1)
part edge(1)

&NULENT is a GPA constant that can be used to assign a null
value to an entity variable.

Subrange Operators

When you are using arrays, many times it is desirable to refer to portions of an

1

array rather than the entire array. The subrange operator “..” addresses a range
of elements in an array.

You have three methods of expressing the upper and lower bounds of a
subrange:

1. Constant Subrange:

The bounds are constants or are expressions that reduce to
constants.

Example

In the example below, the bounds are from 1 to 3, and from
12t0 18

N(1..3), N(4*3..18)

2. Fixed Array Subrange:

The lower bound is a variable and the upper bound is a
constant added to the variable.

Example

In the example below the upper bounds of J and K ranges
are J+7 and k+3 respectively.

N(J..J+7), N(I,J, K .K+3)

2-20

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

GRIP Language Components

3. Variable Array Subrange:

The lower and upper bounds may be expressed as any valid
arithmetic expressions.

Example

In the example below, ABSF(X+3) expresses the lower
bound and [*2 expresses the upper bound.

N(ABSF(X+3) . . 1*2)

Rules for Using Subrange Operators ///2//$

/ 4
e When subranges are used at run time, the difference between the first 7
and last number in the subrange must be positive. If this is not true, a
run time error occurs, and you will be informed that the difference
between subrange operators cannot be negative.

¢ You may use constant and fixed array subranges anywhere in a GRIP
program where an entire unsubscripted array can be used (except in a
data statement).

e You may only use variable array subranges in the following GRIP
functions: BLANK, BOUND, CLINE, DELETE, DRAW, GROUP,
HATCH, IDENT, MASK, and UNBLNK.

©EDS GRIP Fundamentals 2-21
All Rights Reserved Student Guide

GRIP Language Components

Example Array Subrange Usage

ENTI TY/ E1(50) , E2(10, 10)
NUMBER/ NL(200) , N2(10, 10), N3(5, 10)

Table 2—-2 Array Assignments

Assignment Validity

N1(51..150) =N2 Valid assignment of N1 because
, 150 is less than 200.
// 7/ /; Same number of array
2 elements on either side of the

/ /
/77 equals sign.

N3=N1(1..J) Valid. No compilation error.
At run time, error checks will be
made on array bounds
and the subrange.

N1(6..10)=N1(1..5) Valid assignment.
PO NT/ N1(20..22) Valid.
PO NT/N1(1..1+2) Valid.

PO NT/ N1(J. . K) Invalid to use variable array subrange
in a POINT definition.

HATCH E1(J. . K) Valid. Variable subrange can be
used with HATCH statement.

GROP/ E2(1..1,1..J) Invalid. Only one array
subrange can be used in a
multidimensional array.

GRIP Fundamentals ©EDS Unigraphics NX 2
2-22 Student Guide Al Rights Reserved grap

GRIP Language Components

Detect Undeclared Variables

DESCRIPTION

FORMAT
REQUIRED INPUT

OPTIONAL INPUT

PARAMETERS

The GRIPSW statement is used for compiler directives. If used
with the minor word directive DECLRYV, it prevents the program
from compiling if the program contains undeclared simple
variables. This ensures that all variables are declared before
they are used in the program. This reinforces the data
assignment to the correct variable types.

During compilation, if the compiler comes across an undefined
simple variable, it will generate error number 62, UNDEFINED
VARIABLE.

You can place the GRIPSW statement anywhere in the
declaration section, but it must come before the first executable
statement. For example, this declaration:

NUVBER! a, b
GRI PSW DECLRV
STRI NG STR(2, 30) , NAME(6)

would have the same result as this:

GRI PSW DECLRV
NUVBER! a, b
STRI NG STR(2, 30) , NAME(6)

10

o))
1

GRIPSW/DECLRV
DECLRV
NONE

DECLRV Minor word which detects undeclared variables.

©EDS GRIP Fundamentals 2-23
All Rights Reserved Student Guide

7,
/ /
7L

GRIP Language Components

EXAMPLE

DESCRIPTION This example demonstrates the usage of the GRIPSW/DECLRYV statement
in a program.

NUMBER/ A, B
STRI NG STR(2, 30) , NAVE(6)
GRI PSW DECLRV

v, .
;/ / A = 10
/
y NUM= A + B
7 PRI NT/ NUM
HALT

AFTER COMPILATION:

1 NUMBER/ A, B
2 STRI NG STR(2, 30) , NAMVE(6)
3 GR PSW DECLRV

27 A =10
28 NUM= A + B

*

Error no. 62 in line no. 28: Undefined vari abl e

29 PRI NT/ NUM

*

Error no. 62 in line no. 29: Undefined vari abl e

45 HALT

GRIP Fundamentals ©EDS igraphics NX 2
2-24 Student Guide Al Rights Reserved Unigraphics N

GRIP Language Components

Exercises

Complete the following exercises to familiarize yourself with the language
components of GRIP. Refer to the prior pages in this manual, or to the GRIP
Programming Manual for further information.

Exercise 2—-1

Write declarations and/or initialization statements for the data
as described.

1. An engineer wants you to write a program that will
parametrically construct the outer edge of a part that will
be later manufactured using a lathe. Upon further
questioning, you determine that the maximum number of
entities expected for the part edge is 200.

2. You are designing an application that will store the full
path name to a part file. A full path name to a UNIX file
can contain up to 132 characters.

3. You are developing an application that will store the
following data with the following default values that will be
requested by the user:

Numeric information

length 10.2
width 8
height S
Character string information
part name PLATE
designer name XX XXXKKHXXXX
date DD MW YYYY
©EDS GRIP Fundamentals 2-25

All Rights Reserved Student Guide

777
;2
7,

:////,

/

/ 4
Y,

GRIP Language Components

Exercise 2—-2

The following statements are a scrambled GRIP program. Using
the program structure outline on page 2—2, rewrite the
statements in their correct order.

ctr_pt = PO NT/ xc, yc, zc

HALT

DATA/ strt_coord, 10, 20

XC =5

NUMBER/ strt _coord(3), xc, yc, zc
yc = 10

ENTI TY/ ctr_pt, strt_pt

strt_pt = PONT/ strt_coord(1..3)

2-26

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

Two Dimensional Commands

Two Dimensional Command's
Lesson 3

Objectives

e Demonstrate an understanding of two dimensional modeling
commands including points and lines.

e Become familiar with the way the options of the processing commands
are documented.

7
/ 4

/ ’
v

©EDS GRIP Fundamentals 3-1
All Rights Reserved Student Guide

2
/ /

/ ’
v

Two Dimensional Commands

Positional Modifiers

A positional modifier helps the system determine which of several geometric
possibilities will be used. In GRIP documentation, PMOD?2 is used to represent
positional modifiers for two dimensional objects; PMOD3 is used to represent
positional modifiers for three dimensional objects. Positional modifiers identify
quadrant locations or end positions of existing objects. The six PMOD Minor
words are XSMALL, YSMALL, ZSMALL, XLARGE, YLARGE, and
ZLARGE.

Two-Dimensions — PMOD?2

For two dimensional objects, use one of the PMOD?2 modifiers or the
corresponding number listed below. In PMOD?2, the ZSMALL and ZLARGE
positional modifiers are not allowed.

Minor Word Corresponding Number
XSMALL 1
YSMALL 2
XLARGE 4
YLARGE 5
CR(1)
2-D Positional A YLARGE m
Modifier Examples 1
Her &xamp XLARGE
3.
LN(2)
2 . XLARGE

YSMALL

7/. -
YSMALL

Figure 3—1 2-D Positional Modifiers

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

Two Dimensional Commands

Three-Dimensions — PMOD3

For three dimensional objects, use the PMOD3 modifiers listed below, or the

corresponding numbers.

Minor Word Corresponding Number
XSMALL 1
YSMALL 2
ZSMALL 3
XLARGE 4
YLARGE 5
Z1L.ARGE 6
YLARGE
ZLARGE

XSMALL = > XLARGE

ZSMALL
' YSMALL
Figure 3—2 3-D Positional Modifiers (Top View)
©EDS GRIP Fundamentals

All Rights Reserved

Student Guide

7
/

/ ’
v

Two Dimensional Commands

Point

The POINT statement creates points using several different methods. You can
create a point by specifying its work coordinates or by using geometric
construction techniques to create the point relative to other objects.

Table 3—-1 Point Command Statements

Function Format

Coordinates POINT/x,y[,z]
Center of a Circle POINT/CENTER circle
End Point POINT/ENDOFE “PMOD?3”,0bj

Intersection Point ~ POINT/[{“PMOD2” |point},]
INTOFE0bj1,0bj2 [,IFERRlabel:]

2
/ /

/ ’
v

GRIP Fundamentals ©EDS Unigraphics NX 2
3-4 Student Guide Al Rights Reserved grap

Two Dimensional Commands

Point: Coordinates

Synopsis obj = POINT/x,y[,z]
Description Creates a point by specifying its coordinates in XC, YC, and ZC.

The ZC value is optional. If it is omitted, the point will lie on
the current work plane.

Parameters X,y,Z
The X,Y, and Z coordinates of the work coordinate system. If
the optional Z coordinate is omitted, the Z coordinate of the
point will be equal to zero.

Example This example demonstrates the creation of several points by
specifying their coordinates.
Declarations ENTITY/PT1,PT2,PT3
7
Point Definition PT1=POINT/0,0 ,/3 /
PT2=POINT/1,0,1 ‘5
P T3=POINT/1,0 7
zc

Figure 3—3 Points defined by coordinate values

©EDS GRIP Fundamentals 3-5
All Rights Reserved Student Guide

2
/ /

/ ’
v

Two Dimensional Commands

Point: Center of a Circle

Synopsis obj = POINT/CENTERcircle
Description Creates a point at the center of a previously defined circle.
Parameters CENTER
Minor word that indicates that the point defined will be the
center of a circle.
circle
An existing circle.
Example This example demonstrates the creation of a point at the center
of a previously defined circle.
Declarations ENTITY/CR1,PT1
Geometry Definition CR1=CIRCLE/0,0,1
Point Definition PT1=POINT/CENTER,CR1
CR1
PTI1
Figure 3—4 A point at the center of a circle
3—6 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Two Dimensional Commands

Point: End Point

Synopsis

Description

Parameters

Example

Declarations

Geometry Definition

Point Definition

obj = POINT/ENDOE“PMOD3”,0bj

Creates a point at the end of a previously defined object. A
positional modifier is used to define which end of the object is
desired.

ENDOF
Minor word that indicates that the point defined will assume the
coordinate values at the end of an object.

PMOD3

A three dimensional positional modifier which indicates which
end of the object will be used. The direction will be in reference
to the work coordinate system.

obj
An existing object which may be any one of the following curves:
line, circle, conic, or spline

This example demonstrates the creation of several points at the /7
ends of a line and a circle. y /

/ /
ENTITY/LN1,CR1,PT1,PT2,PT3,PT4 S

LN1=LINE/-2,-1,0,1
CR1=CIRCLE/1,0,1,START45,END,210

PT1=POINT/ENDOEXSMALL,LN1
PT2=POINT/ENDOFEYLARGE,LN1
PT3=POINT/ENDOEXLARGE,CR1
PT4=POINT/ENDOFYSMALL,CR1

PT2
PT3
> CR1

S

PT4
PT1

Figure 3—5 A point at the end of an object
©EDS GRIP Fundamentals 37

All Rights Reserved Student Guide

2
/ /

/ ’
v

Two Dimensional Commands

Point: Intersection Point

Synopsis

Description

Parameters

NOTE

obj = POINT/[{“PMOD?2” | point},]INTOF,0bj1,0bj2
[LIFERR,label:]

Creates a point at the intersection of two previously defined
objects. A reference point may be specified to indicate the
desired point in the case of multiple intersections of the two
objects. The intersection is determined by looking down the
Z-axis of the WCS.

PMOD2

A two dimensional positional modifier which may be used to
indicate which intersection will be used when multiple
intersections exist. The direction will be in reference to the
work coordinate system.

point

Reference point closest to the desired intersection which may be
used instead of the positional modifier, when both objects are
curves. If the desired point is the intersection of a curve and a
surface or plane, a previously defined point must be used.

A positional modifier is used to assign a reference point.
This calculated reference point may not yield the
expected results.

INTOF

Minor word that indicates that the point defined will be a
unique intersection of two objects.

obj1,0bj2
Two existing objects which are not parallel in the work view. If
one of the objects is a surface or plane, it must be obj2.

IFERR label:

Specifies label to which program execution will jump if no
intersection is found.

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

Two Dimensional Commands

Example

Declarations

Geometry Definition

Point Definition

This example demonstrates the creation of several intersection
points between two sets of circles.

ENTITY/CR1,CR2,CR3,CR4,PT0,PT1,PT2,PT3,PT4

CR1=CIRCLE/-1.25,0,.5
CR2=CIRCLE/-.5,0,.5
CR3=CIRCLE/1,.375,.5
CR4=CIRCLE/1,-.375,.5
PTO=POINT/1.5,0

PT1=POINT/YLARGE,INTOF,CR1,CR2
PT2=POINT/YSMALL,INTOF,CR1,CR2
PT3=POINT/XSMALL,INTOF,CR3,CR4
PT4=POINT/PTO,INTOF,CR3,CR4

PT4
PT1 PT3 ﬁ
. @
P12 PTO 77
/

/ ’
v

Figure 3—6 Intersection points of two curves

©EDS GRIP Fundamentals 3-9
All Rights Reserved Student Guide

Two Dimensional Commands

Point: EDA

Synopsis

Description

Characteristics

Example

2
/ /

/ ’
v

&POINT (obj)

Accesses the location of an existing point. The coordinates in
X, Y, and Z of the work coordinate system may be extracted
and/or edited.

Read/Write Number Three Position Numerical Array

This example demonstrates the use of the &POINT EDA to edit
the location of a point. A point is created and it’s coordinates
displayed in a menu using the &POINT EDA in a read mode.
Once the user enters the new coordinates, the point is edited by
using the &POINT EDA in a write mode.

ENTI TY/ ref_point
NUMBER/ ref coord(3), resp
$$
$$ Create point
$$
ref_point = PONT/ 3, 0, O
$$
$$ Extract coordinates of the point
$$
ref _coord = &PO NT(ref _point)
$$
$$ Change the val ues of the coordinates
$$
ref _coord(1l)
ref coord(2)
ref coord(3)
$$
$$ Edit the point using the new coordinates
$$
& PO NT(ref _point) = ref_coord
CANCEL:
HALT

ref _coord(1)+1.5
ref _coord(2)+2
ref _coord(3)+1

GRIP Fundamentals ©EDS Unigraphics NX 2
3-10 Student Guide Al Rights Reserved grap

Two Dimensional Commands

Line

The LINE statement creates lines using several different methods. You can
define a line between end points or use geometric construction principles using

other existing geometry.

Table 3-2 Line Command Statements

Type Format

Between Two LINE/x1,y1[,z1],x2,y2[,z2]
Specified Points

Between Two LINE/point1,point2

Existing Points
Parallel at a Distance
Thru a Point, at an Angle

Point, Tangent to a Curve

Thru a Point, Parallel/
Perpendicular to a Line

LINE/PARLEL,line,“PMOD3” offset
LINE/point, ATANGL,angle

LINE/point1,{ LEFT|RIGHT |point2}, 7777
TANTO,curve // ;

/ /
LINE/point, YIS
{PARLEL |PERPTO} line

©EDS
All Rights Reserved

GRIP Fundamentals

Student Guide 3-11

2
/ /

/ ’
v

Two Dimensional Commands

Line: Between Two Specified Points (Coordinates)

Synopsis obj = LINE/x1,y1[,z1],x2,y2[,z2]

Description Creates a line by specifying the coordinates of the end points of
the line.
The Z value at both positions is optional, therefore, if only the
X and Y coordinates of an end point is specified, the current
depth setting will be assumed for the Z coordinate. If both Z
values are omitted, the line will lie in a plane parallel to the X-Y
plane of the work coordinate system.

Parameters x1,yl1,z1,x2,y2,z2
The coordinate values of two points between which the line will
be created. The start point of the line will be at coordinates
x1,y1,z1 and the end will be at coordinates x2,y2,z2.

Example This example demonstrates the creation of two lines by
specifying the coordinates of their end points.
LNT1 lies on the current work plane because only X and Y values
were specified.
LNZ2 is defined in space because X, Y, and Z values were
specified.

Declarations ENTITY/LN1,LN2

Line Definition LNI1=LINE/-1,-1,1,1
LN2=LINE/-1,1,1,1,—1,—1

%
R
Figure 3—7 Top view of lines created with two and three dimensional values
3-12 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Two Dimensional Commands

Line: Between Two Existing Points

Synopsis

Description

Parameters

Example

Declarations

Geometry Definition

Line Definition

NOTE

obj = LINE/point1,point2

Creates a line between two previously defined points. A point
array may be used to define the two points.

pointl, point2

Two previously defined points between which the line is created.
The start point of the line is pointl and the end point is point 2.

This example demonstrates the creation of a line between two
previously defined points.

ENTITY/PT1,PT2,LN1

PT1=POINT/-1,-1
PT2=POINT/PT1,DELTA,2,2,0

LN1=LINE/PT1,PT2
77
PT2 ; 3 ;
S

PT1

Figure 3—8 A line between two points.

Since PT1 and PT2 were defined with two dimensional
values the line LN1 will lie in the X-Y plane of the work
coordinate system, if the work coordinate system is not
changed between the point definitions and the line
creation.

©EDS GRIP Fundamentals 3-13
All Rights Reserved Student Guide

2
/ /

/ ’
v

Two Dimensional Commands

Line: Parallel at a Distance

Synopsis

Description

Parameters

NOTE

obj = LINE/PARLEL line,“PMOD3” offset

Creates a line parallel to an existing line at a specified distance.
A positional modifier is used to indicate which side of the
existing line the new line will be created on.

If XLARGE, XSMALL, YLARGE, YSMALL are specified,
the distance will be offset in the current work plane.

If ZLARGE or ZSMALL is specified the distance will be offset
parallel to the current Z axis.

PARLEL

Minor word that indicates that the new line will be parallel to an
existing line.

line
An existing line to which the new line will be parallel.

PMOD3

The positional modifier PMOD3 establishes the relationship of
the new line to the existing line, with respect to the work
coordinate system.

offset
The distance from the existing line to the new line.

The length of the new line will be the same as the existing
line.

3-14

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

Two Dimensional Commands

Example This example demonstrates the creation of a line parallel to
another existing line at a specified distance.

Declarations ENTITY/LN1,LN2,LN3
Geometry Definition LN1=LINE/-1,0,1,0

Line Definition LN2=LINE/PARLEL,LN1,YLARGE,1
LN3=LINE/PARLEL,LN1,YSMALL,1

LN2

YLARGE

LN1

YSMALL

LN3

Figure 3—9 Lines parallel to an existing line at a given distance 7///
/
/ /

/ ’
v

©EDS GRIP Fundamentals 3-15
All Rights Reserved Student Guide

Two Dimensional Commands

Line: Through a Point, At an Angle

Synopsis obj = LINE/point, ATANGL,angle
Description Creates a line thru a previously created point at a specified
angle. The angle is measured counterclockwise from the
current positive X axis. The line is created, and the angle is
measured in a plane containing the point which is parallel to the
current work plane.
Parameters point
A previously defined point through which the line will run.
ATANGL
Minor word that indicates that the angle of the line will be
specified.
/72 angle
’ 3 / The angle of the line in degrees, which is measured from the
/) positive X axis of the work coordinate system to the line. A
positive angle will rotate the line counterclockwise about the
specified point and a negative angle will rotate the line
clockwise.
Example This example demonstrates the creation of two lines that pass
thru PT1 at a specified angle.
Declarations ENTITY/PT1,LN1,LN2
Geometry Definition PT1=POINT/0,0
Line Definition LN1=LINE/PT1,ATANGL,45
LN2=LINE/PT1,ATANGL,-30
3—-16 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Two Dimensional Commands

Figure 3—10 Line through a point at an absolute angle

7

/ ’
v

©EDS GRIP Fundamentals 3-17
All Rights Reserved Student Guide

7
/ 4

/ ’
v

Two Dimensional Commands

Line: Point, Tangent to a Curve

Synopsis

Description

Parameters

obj = LINE/point1,{LEFT |RIGHT | point2}, TANTO,curve

Creates a line from specified point tangent to a previously
defined curve. You may specify either a point or use the minor
words RIGHT or LEFT to define which side of the curve the
line should be tangent to. If you use RIGHT or LEFT, position
yourself at the point looking at the curve.

pointl
A previously defined point from which the line will start.

LEFT,RIGHT

Positional modifiers which may be used to indicate which side of
the existing curve the line will be tangent to, as viewed from the
point to the curve. LEFT and RIGHT are not recommended
for splines.

point2
A previously defined point may be used in place of the
positional modifier to approximate the point of tangency.

TANTO

Minor word that indicates that the new line will be tangent to an
existing curve.

curve
An existing curve to which the new line will be tangent.

3-18

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

Two Dimensional Commands

Example

Declarations

Geometry Definition

Line Definition

This example demonstrates the creation of two lines from PT1
tangent to a previously defined circle.

LNT1 is defined using PT2 to specify which side of the circle it
should be tangent to.

LN2 is defined using a the minor word RIGHT.
ENTITY/PT1,PT2,CR1,LN1,LN2
PT1=POINT/-1,0

PT2=POINT/1,1

CR1=CIRCLE/1,0,.5

LN1=LINE/PT1,PT2,TANTO,CR1
LN2=LINE/PT1,RIGHT,TANTO,CR1

-/— PT2

CR1
LN
PT1 ,
/////,
/
N3 / /
YIS
Figure 3—11 Line through a point and tangent to a curve
©EDS GRIP Fundamentals 3-19

All Rights Reserved Student Guide

2
/ /

/ ’
v

Two Dimensional Commands

Line: Through a Point, Parallel/Perpendicular to a Line

Synopsis

Description

Parameters

NOTE

obj = LINE/point,{ PARLEL |PERPTO}, line

Creates a line thru a previously defined point which is either
parallel or perpendicular to a specified line. The line will be
created either parallel or perpendicular to the specified curve
depending upon which minor word (PARLEL or PERPTO) is
used.

point
A previously defined point from which the perpendicular line
will start or through which the parallel line will run.

PARLEL

Minor word that indicates that the new line will be parallel to an
existing line.

PERPTO

Minor word that indicates that the new line will be
perpendicular to an existing line.

line

An existing line to which the new line will be parallel or
perpendicular.

If PARLEL is used, the new line will be the same length
as the existing line if the projected point falls between the
existing line endpoints. Otherwise, the end closest to the
point will be extended to the point.

3-20

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

Two Dimensional Commands

Example This example demonstrates the creation of several lines which
are parallel or perpendicular to a line (LN1) and pass thru a
previously defined point.

Declarations ENTITY/PT1,PT2,LN1,LN2,L.N3,L.N4

Geometry Definition PT1=POINT/0,—.5
PT2=POINT/0,.5
LN1=LINE/-1,-.5,0,.5

Line Definition LN2=LINE/PT1,PARLEL,LN1
LN3=LINE/PT1,PERPTO,LN1
LN4=LINE/PT2,PERPTO,LN1

2
/ /

/ ’
v

Figure 3—12 Lines through points, parallel or perpendicular to a line

©EDS GRIP Fundamentals 3-21
All Rights Reserved Student Guide

7
/ 4

/ ’
v

Two Dimensional Commands

Line EDA’s
There are several EDA’s which access the geometric properties
of a line. Some of the EDA’'s are READ/WRITE, which means
that the properties can be accessed and edited. READ ONLY
EDA’s can be accessed to extract the geometric properties only.
Geometric EDA Symbol Access Data Type
Property Type
Start point &SPOINT(obj) R/W N(3)
End point &EPOINT (obj) R/W N(@3)
Length &LENGTH(obj) RO Number
3-22 GRIPSIiL‘;Ié(iiItnCe}rllltizls Al Rigl%fggserved Unigraphics NX 2

Two Dimensional Commands

Example This example demonstrates the use of the line EDA’s in
conjunction with the &POINT EDA to trim a line.

—\ int_pt

‘L In2

In1

Figure 3—13 Untrimmed: the objective is to trim In2 to the intersection between Inl and In2

int_pt = PO NT/ INTOF, Inl, In2
scoord = &SPQA NT(I n2)

ecoord = &EPQA NT(I n2)

$$

$$ Evaluate the coordinates of I n2 to deternine
$$ whether the starting coordi nate or ending
$$ coordinate should be edited

$$,

| FTHEN/ scoord(1) < ecoord(1) ,/é//;
&EPA NT(1n2) = &PQA NT(int_pt) g ’

ELSE/ e
&SPA NT(I n2) = &PQA NT(int_pt)

ENDI F

DELETE/ int_pt
In1

-\

‘L In2

Figure 3—14 Trimmed: In2 is trimmed to the intersection between Inl and In2

©EDS GRIP Fundamentals 3-23
All Rights Reserved Student Guide

Two Dimensional Commands

Activity The L-shape

This first activity will let you begin programming in GRIP. Look at the diagram
of the L—Shape on the next page. Write a program to create the figure. Create
a new file using your initials (***-Ishape.grs) and follow these directions:

1 Use line definitions only. Do not use any point definitions.

1 Write the program so that the X and Y coordinates for the
lowest, leftmost corner of the figure are the only coordinates
that will be given.

1 The following number of variables and their accompanying
values are the only ones to be used.

Variable Value Definition

X 0 X coordinate of lowest,
leftmost corner of figure.

7% ’ T etimost comor of fgure.
YIS bw 1 Bottom width of figure
tw 2 Top width of figure
tht 6 Total height of figure
tpht 2 Top height of figure

Notice that the variables are numeric. This means you cannot use them as
object names. The variables represent the lengths of the lines.

TIP This project will need declaration and initialization statements:
ENTI TY/
NUVBER/
DATA/

six LI NE/ statements such as:
In(1) = LINE/X, vy, X, (y + tht)

and the program termination statement:
HALT

GRIP Fundamentals ©EDS Unigraphics NX 2
3-24 Student Guide Al Rights Reserved grap

Two Dimensional Commands

ITHT
74

/ ’
v

Figure 3—15 The L—Shape

©EDS GRIP Fundamentals 3-25
All Rights Reserved Student Guide

Two Dimensional Commands

(This Page Intentionally Left Blank)

7
/

/ ’
v

GRIP Fundamentals ©EDS igraphics NX 2
3-26 Student Guide All Rights Reserved Unigraphics N

More Two Dimensional Commands

More Two Dimensional Commands
Lesson 4

Objectives

e Demonstrate an understanding of two dimensional circle commands.

e Become familiar with the way the options of the processing commands
are documented.

e Demonstrate knowledge of the Entity Data Access Symbols (EDA’s)
used when accessing and altering information about geometric objects.

7
¢ 4

/ /
v

©EDS GRIP Fundamentals 4-1
All Rights Reserved Student Guide

More Two Dimensional Commands

Circle

A Circle is created in a counterclockwise direction from the positive X axis of
the work coordinate system. The start and end angles of the arc may be
specified in some of the circle definitions. If the optional start and end angles
are omitted in the definition statement, a full circle will be created.

Table 4—1 Circle Command Statements

Function Format

Center Coordinates, CIRCLE/ x,y, [z,] r

Radius [,START, start angle, END, end angle]
Center Point, CIRCLE/ CENTER, point, RADIUS, r
Radius [,START, start angle, END, end angle]
Center Point, CIRCLE/ CENTER, point, TANTO, line,
Tangent to Line [,START, start angle, END, end angle]
Center Point, CIRCLE/ CENTER, pointl, point2,
Point on Arc [,START, start angle, END, end angle]
Through Three CIRCLE/ pointl, point2, point3
Points

7

>

7SS

4-2 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

More Two Dimensional Commands

Circle: Center Coordinates, Radius

Synopsis

Description

Parameters

obj = CIRCLE/x,y,[z,]r[,START,start angle, END,end angle]

Creates a circle by defining the X, Y, and Z coordinates in work
coordinates and the radius. The Z coordinate is optional. The
plane of the arc will be parallel to the plane of the current WCS.

X,y,[z]

The coordinate values of the circle center point. If the optional
Z coordinate is omitted, the center point will assume the Z
value of the currently set depth.

r
A positive value which establishes the circle radius.

START

The optional parameter START indicates that the starting angle
for the arc will be specified.

start angle

The starting angle of the arc as measured from the positive X
axis of the work coordinate system.

END

The optional parameter END indicates that the ending angle
for the arc will be specified.

7
4
end angle / /
The ending angle of the arc as measured from the positive X Zz
axis of the work coordinate system.

©EDS GRIP Fundamentals 4-3
All Rights Reserved Student Guide

More Two Dimensional Commands

Example This example shows the creation of a full and partial circle.
The partial circle demonstrates the use of the START and END
minor words.

Declarations ENTITY/CR1,CR2
CR1=CIRCLE/1,0,1,.5
CR2=CIRCLE/3,0,.5,START,30,END,270

30 DEGREES

CR1 CR2

270 DEGREES

Figure 4—1 Arcs with specified center point coordinates and radius

7/
¢ 4

/ /
v

GRIP Fundamentals ©EDS igraphics NX 2
4-4 Student Guide Al Rights Reserved Unigraphics N

More Two Dimensional Commands

Circle: Center Point, Radius

Synopsis

Description

Parameters

obj = CIRCLE/CENTER,point, RADIUS,r
[,START,start angle, END,end angle]

Defines a circle with a specified radius using a previously
defined point as its center. You may also define start and end
angles for the circle.

CENTER

Minor word that indicates that the center of the circle is an
existing point.

point
A previously defined point which establishes the center of the
circle.

RADIUS

Minor word that indicates that the radius of the circle will be
specified.

r
A positive value which establishes the circle radius.

START
Indicates that the starting angle for the arc will be specified.

start angle

The starting angle of the arc as measured from the positive X
axis of the work coordinate system.

END
Indicates that the ending angle for the arc will be specified.

end angle

The ending angle of the arc as measured from the positive X
axis of the work coordinate system.

©EDS GRIP Fundamentals 4-5

All Rights Reserved Student Guide

7
¢ 4

/ /
v

More Two Dimensional Commands

Example The following example shows the creation of a circle using a

center point and radius.
Declarations ENTITY/PT1,CR1

Geometry Definition PT1=POINT/0,0
Circle Definition CR1=CIRCLE/CENTER,PT1,RADIUS,1

PT1

CR1

Figure 4—2 Circle with a specified center point and radius

7/
4

/ /
v

4—6 GRIP Fundamentals ©EDS
Student Guide All Rights Reserved

Unigraphics NX 2

More Two Dimensional Commands

Circle: Center Point, Tangent to a Line

Synopsis

Description

Parameters

obj = CIRCLE/CENTER,point, TANTO,line
[LSTART,start angle, END,end angle]

Creates a circle which is tangent to a specified line using a
previously defined center point. The arc lies in the plane
containing the center point and the line. You may also define
start and end angles for the circle.

CENTER

Minor word that indicates that the center of the circle is an
existing point.

point
A previously defined point which establishes the center of the
circle.

TANTO

Minor word that indicates that the circle will be tangent to an
existing object.

line
An existing line to which the circle will be tangent .

START

The optional parameter START indicates that the starting angle

for the arc will be specified. 7277
v 4 ;

start angle ’,/ / /2

The starting angle of the arc as measured from the positive X
axis of the work coordinate system.

END

The optional parameter END indicates that the ending angle
for the arc will be specified.

end angle

The ending angle of the arc as measured from the positive X
axis of the work coordinate system.

©EDS GRIP Fundamentals 4-7
All Rights Reserved Student Guide

More Two Dimensional Commands

NOTE If the plane defined by the line and center point are not
parallel to the WCS, the system ignores the start and end
angles and creates a full circle.

Example The following example shows how to create a circle with a
center point, tangent to a line.

ENTITY/PT1,LN1,CR1
PT1=POINT/0,0
LN1=LINE/2,0,0,2

CR1=CIRCLE/CENTER,PT1,TANTO,LN1,START,0,END,90

90 DEGREES < 4
%

CR1

PT1 J

O DEGREES
7//// Figure 4—3 Arc with a specified center point and tangent to a line
v 4 7
/ /
v
4—8 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

More Two Dimensional Commands

Circle: Center Point, Point on the Arc

Synopsis

Description

Parameters

obj = CIRCLE/CENTER,point1,point2
[,START,start angle,END,end angle]

Creates a circle by specifying a previously defined point on its
arc (point is used to calculate the radius), whose center point is
also previously defined. You may also define start and end
angles for the circle.

CENTER

Minor word that indicates that the center of the circle is an
existing point.

pointl
A previously defined point which establishes the center of the
circle.

point2
A previously defined point through which the arc passes . The
point may lie on a non-constructed portion of the arc.

START

The optional parameter START indicates that the starting angle
for the arc will be specified.

start angle

. .. /,
The starting angle of the arc as measured from the positive X //Z//;
axis of the work coordinate system. / /
v

END

The optional parameter END indicates that the ending angle
for the arc will be specified.

end angle

The ending angle of the arc as measured from the positive X
axis of the work coordinate system.

©EDS GRIP Fundamentals 4—9
All Rights Reserved Student Guide

More Two Dimensional Commands

Example The example shows the use of the Center Point, Point on the
Arc statement to create full and partial circles.
Declarations ENTITY/P(4),CR(2)

Geometry Definition P(1)=POINT/1,0
P(2)=POINT/1,.5
P(3)=POINT/3,0
P(4)=POINT/3,.5

Circle Definition CRglg =CIRCLE/ CENTER,PE 1§,P22§,START,45 ,END,360
CR

2)=CIRCLE/CENTER,P(3),P(4

45 DEGREES

360 DEGREES P(4)

P(3)

CR(2)

Figure 4—4 Arcs with specified center points and points on the arcs
/,
777
¢ 4

/ /
v

GRIP Fundamentals ©EDS Unigraphics NX 2
4-10 Student Guide Al Rights Reserved grap

More Two Dimensional Commands

Circle: Through Three Points

Synopsis

Description

Parameters

Example
Declarations

Geometry Definition

Circle Definition

NOTE

obj = CIRCLE/pointl,point2,point3

Creates a circle thru three previously defined points. The points
are used to calculate the plane of the arc.

pointl,point2,point3

Three previously defined points through which the arc passes.
The arc is constructed in a counterclockwise direction (with
respect to the ZC axis of the WCS) from point1 (start) to point
3 (end). The second point, point 2, may lie on either the
constructed or non-constructed portion of the arc. If the three
points are collinear, an error message will be displayed.

This example shows the creation of a circle thru three points.

ENTITY/P(3),CR1
P(1)=POINT/1,0
P(2)=POINT/0,1
P(3)=POINT/0,—1

CR1 = CIRCLE/P(1),P(2),P(3)

The following statement shows the use of the point array
to specify the three points in the arc.

CR1 = CIRCLE/P

P(2)
7
'3
v
CR1
P(1)
P(3)

Figure 4—5 An arc through three points

©EDS GRIP Fundamentals 4-11
All Rights Reserved Student Guide

7/
4

/ /
v

More Two Dimensional Commands

Fillet

The FILLET statement creates an arc of a specified radius
between two objects.

Fillets are created counterclockwise from the positive X
direction of the work coordinate system.

The FILLET statement will trim the objects being filleted to the
endpoints of the fillet. Trim can be suppressed by specifying the
optional minor word NOTRIM.

Table 4-2 Fillet Command Statements

Function Format

Two Entities, FILLET/objl,0bj2, CENTER,point,
Center Point RADIUS,r[,NOTRIM]
[,IFERR label:]

Two Lines, FILLET/“PMOD3” linel,“PMOD3”,
Positional Modifiers line2, RADIUS,r[, NOTRIM]
[,IFERR label:]

4-12

GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

More Two Dimensional Commands

Fillet: Two Objects, Center Point

Synopsis

Description

Parameters

obj = FILLET/obj1,0bj2,CENTER,point, RADIUS,r
[NOTRIM] [,IFERRlabel:]

Creates a fillet between two objects by specifying the objects
(e.g. two lines), a point which lies in the same area as the center
of the fillet radius, and the radius value.

The center point should be in the general vicinity of the fillet
radius center. If two perpendicular lines are being filleted, the
point can be anywhere in the quadrant which contains the
desired fillet radius. However, if you want to fillet other objects,
defining the proper point can be more difficult.

obj1,0bj2

The two existing objects to be filleted. The objects do not have
to intersect, but the maximum distance between the two points
of tangency must be less than or equal to twice the specified
radius of the fillet. The fillet will be constructed
counterclockwise from the first object to the second object.

CENTER

Minor word that indicates that a point will be supplied which
will approximate the location of the fillet center.

point

A previously defined point which approximates the location of

the fillet center. If the indicated center is invalid, the error

message NO FILLET will be displayed. The approximate point

will be projected onto the fillet plane along the plane’s Z axis. 7////
4

RADIUS, r

A positive value which establishes the fillet radius. If the radius
is invalid, the error message NO FILLET will be displayed.

NOTRIM

If the NOTRIM parameter is included the objects will remain
unchanged, if omitted the objects will be trimmed to the points
of tangency.

/

/ /
v

IFERRlabel:

Specifies a label to which program execution jumps if an error
occurs.

©EDS GRIP Fundamentals 4-13
All Rights Reserved Student Guide

More Two Dimensional Commands

Example This example demonstrates the creation of a fillet between two
previously defined lines. NOTRIM suppresses trimming the
lines. A previously defined point (PT1) is used to specify the
fillet radius center.

Without the point (PT1), this fillet statement could generate
four different fillets, one in each quadrant formed as the lines
cross. The point (PT1) clearly lies in the lower quadrant which
is where the fillet is created.

Declarations ENTITY/PT1,LN1,LN2,FLT1
Geometry Definition PT1 =POINT/0,0

LN1 =LINE/0,1.5,1,—.5

LN2 =LINE/1,1.5,—1,-.5

Fillet Definition FLT1=FILLET/LN1,LN2,CENTER,PT1,RADIUS,.5,NOTRIM

7
4 Figure 4—6 Two object fillet without trimming

/ /
v

GRIP Fundamentals ©EDS Unigraphics NX 2
4-14 Student Guide Al Rights Reserved grap

More Two Dimensional Commands

Example

Declarations

Geometry Definition

Fillet Definition

This example demonstrates the creation of a fillet between two
previously defined lines. A previously defined point (PT1) is
used to specify the fillet radius center.

Without the point (PT1), this fillet statement could generate
four different fillets, one in each quadrant formed as the lines
cross. The point (PT1) clearly lies in the lower quadrant which
is where the fillet is created.

ENTITY/PT1,LN1,LN2,FLT1
PT1 =POINT/0,0

LN1 =LINE/0,1.5,1,—.5

LN2 =LINE/1,1.5,—1,—-.5

FLT1=FILLET/LN1,LN2,CENTER,PT1,RADIUS,.5

Figure 4—7 Two object fillet with trimming

7
¢ 4

/ /
v

©EDS GRIP Fundamentals 4-—-15
All Rights Reserved Student Guide

7/
¢ 4

/ /
v

More Two Dimensional Commands

Fillet: Two Lines, Positional Modifiers

Synopsis

Description

Parameters

obj = FILLET/“PMOD3”,linel,“PMOD3”,line2,
RADIUS,r[,NOTRIM] [,IFERR label:]

Creates a fillet between two previously defined lines. The fillet
radius center is located by specifying its position relative to the
objects using positional modifiers. The fillet will be created
counterclockwise from the first to the second object.

PMOD3

A positional modifier which is used to indicate on which side of
the existing line the fillet lies . The direction will be in
reference to the work coordinate system.

linel,line2

The two existing lines to be filleted. The lines do not have to
intersect, but must be co-planar and the maximum distance
between the two points of tangency must be less than or equal
to twice the specified radius of the fillet. The fillet will be
constructed counterclockwise from the first line to the second
line.

RADIUS

Minor word that indicates that the radius of the fillet will be
specified.

r

A positive value which establishes the fillet radius. If the radius
is invalid, the error message NO FILLET will be displayed.

NOTRIM

If the NOTRIM parameter is included the objects will remain
unchanged, if omitted the objects will be trimmed to the points
of tangency.

IFERRlabel:

Specifies a label to which program execution jumps if an error
occurs.

4-16 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

More Two Dimensional Commands

Example This example demonstrates the creation of a fillet between two
lines where the center of the fillet is defined using positional
modifiers.

Declarations ENTITY/LN1,LN2,FLT1

Geometry Definition LN1 =LINE/-1,0,1,0
LN2 =LINE/0,—-1,0,1

Fillet Definition FLT1=FILLET/YLARGE,LN1,XSMALL,LN2,RADIUS,.5,$
NOTRIM

FLTI1)/
LNI

LNZ

Figure 4—8 Lines filleted in the second quadrant

777
24 ¢
7S

©EDS GRIP Fundamentals 4-17
All Rights Reserved Student Guide

More Two Dimensional Commands

Example This example demonstrates the creation of a fillet between two
lines by specifying the fillet center using positional modifiers.
Declarations ENTITY/LN1,LN2,FLT1

Geometry Definition LN1 =LINE/—1,0,1,0
LN2 =LINE/0,—-1,0,1

Fillet Definition FLT1=FILLET/YSMALL,LN1,XLARGE,LN2,RADIUS,.5,$
NOTRIM

LN1

A

LNZ2

Figure 4—9 Lines filleted in the fourth quadrant

7/
4

/ /
v

GRIP Fundamentals ©EDS Unigraphics NX 2
4-18 Student Guide Al Rights Reserved grap

More Two Dimensional Commands

Circle EDA’s

There are several EDA’s which access the geometric properties
of arcs. These EDA’s work on objects that were created using
either the CIRCLE/ or the FILLET/ command. Some of the
EDA’s are READ/WRITE, which means that the properties can
be accessed and edited. Using EDA’s in the edit mode can be a
convenient method for making extensive changes. For example,
you could write a program that would READ the radius of every
arc in a part, and edit any .250 radii to .253, if press fits for that
size hole were all replaced with slip fits.

The X, Y, and Z axis matrix values represent axes of the
coordinate system of the arc. The arc lies in the X—Y plane,
with the arc angle measured counterclockwise from the positive
X axis.

Geometric Property | EDA Symbol Access Data Type
Type

Center (X,Y,Z) &CENTER (obj) RW N(3)

Radius &RADIUS(obj) RW Number

Start angle &SANG(obj) RwW Number

End angle &EANG(obj) RW Number

Start point (X,Y,Z) | &SPOINT(obj) RW N(3)

End point (X,Y,Z) | &EPOINT(obj) RW N(3)

Arc length &LENGTH(obj) RO Number

X axis matrix values | &XAXIS(obj) RO N(3)

Y axis matrix values | & YAXIS(obj) RO N(3)

Z axis matrix values | &ZAXIS(obj) RO N(@3) 7////
'3
v

©EDS GRIP Fundamentals

All Rights Reserved

Student Guide

4-19

More Two Dimensional Commands

Example This example demonstrates the use of the circle EDA’s to edit
the start and end angles of an arc.

arc

Figure 4—10 Original arc, starting at 270 degrees, ending at 90 degrees

ENTI TY/ arc
arc = CIRCLE/ 0, 0, 1, START, 270, END, 90

&SANGarc) =0
HALT

arc

Figure 4—11 Edited arc, starting at 0 degrees, ending at 90 degrees

2
24
7SS

GRIP Fundamentals ©EDS Unigraphics NX 2
4-20 Student Guide Al Rights Reserved grap

More Two Dimensional Commands

Entity Independent EDA’s

There are several EDA’s that allow information about objects to
be extracted and modified.

Geometric Property | EDA Symbol Access Data Type
Type

Font &FONT (obj) RW | Number [1..7]

For the &FONT EDA, the following values are expected:
1 = &SOLID
2 = &DASHED
3 = &PHANTM
4 = &CLINE
S = Dotted

6 = Long Dashed
7 = Dotted Dashed

Example ENTI TY/ arc
arc = CIRCLE/ O, 0,1, START, 270, END, 90
&FONT(arc) = &DASHED

Geometric Property | EDA Symbol Access Data Type
Type
Color &COLOR(obj) RW | Number [1..15]
For the &COLOR EDA, the following values are expected:

1 = &BLUE 6 = &YELLOW 11 = &ORANGE
2 = &GREEN 7 = &WHITE 12 = &PURPLE
3 = &CYAN 8 = &OLIVE 13 = &DKRED 7///
4 = &RED 9 = &PINK 14 = &AQUAMR 7 4 /

S = &MAGENT 10 = &BROWN 15 = &GRAY / /
v

Example ENTI TY/ arc
arc = CIRCLE/ 0, 0, 1, START, 270, END, 90
&COLOR(arc) = &MVAGENT

©EDS GRIP Fundamentals 4-21
All Rights Reserved Student Guide

More Two Dimensional Commands

Geometric Property | EDA Symbol Access Data Type
Type
Line Width &LWIDTH(obj) RW | Number [1..3]
For the &LWIDTH EDA, the following values are expected:
1 = Normal
2 = Thick (heavy)
3 = Thin
Example ENTI TY/ arc
arc = CIRCLE/ 0, 0, 1, START, 270, END, 90
& W DTH(arc) = 2
Geometric Property | EDA Symbol Access Data Type
Type
Layer &LAYER(obj) RW Number
[1..256]
Example ENTI TY/ arcl, arc2
arc2 = CIRCLE 0, 0, 1, START, 270, END, 90
&LAYER(arc2) = &LAYER(arcl)
7/,
777,
v 4 7
/ /
v
4-22 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

More Two Dimensional Commands

Nesting

You may nest definitions of objects within other definitions.

e The nested statement must have parentheses around it.

¢ A maximum of 10 objects may be nested with each other.

Nesting can be useful, but you can also carry it to extremes. Nesting will make a
program difficult to read, to debug, and to revise, and may have a great effect
on the run time.

Example

ENTI TY/ P1, P2, LN1

P1=PO NT/ 0, 1.5

P2=PAO NT/ 2. 2, 3.7

LN1=LI NE/ P1, P2

HALT

$$ PREVI OQUS PROGRAM COULD HAVE BEEN WRI TTEN

ENTI TY/ P1, P2, LNL
LN1=LI NE/ (P1=POl NT/ 0, 1. 5), (P2=POI NT/ 2. 2, 3. 7)
HALT

Example

$$ CREATE PO NT AT | NTERSECTI ON OF 2 LI NES
ENTI TY/ P1, P2, P3, P4, P5, LNL, LN2
P5=PO NT/ | NTOF, (LNL=LI NE/ $
(P1=POI NT/ 1, 1), (P2=POI NT/ 3, 1. 5)), (LN2=LI NE/ $

(P3=POI NT/ 1.5, 6. 2), (P4=POI NT/ 3. 2, 2. 7))
AT 7,

/ /
v

©EDS GRIP Fundamentals 4-23
All Rights Reserved Student Guide

More Two Dimensional Commands

Activity: Sheet Metal Part

Write a program to draw the sheet metal part pictured on the following page.
Follow the steps below.

1 Use any geometry definition necessary.

1 The dimensions of the part are 5 X 6, with filleted corners,
containing two holes and a pocket with rounded ends.

The radii of the circles and arcs are one-sixth the distance
between the center of the part and the corners of the part
(before filleting). To get this distance, use the formula:

r ad=SQRTF((hgt/2) **2+(wi d/ 2) **2)/ 6

1 Construct the geometry using the center of the part as your
starting point. All objects should be created in relation to
the center of the part. Do not start at one of the corners.

When you finish the assignment, demonstrate the program to
your instructor.

Optional Tasks:
72 e Make the color of the part edge cyan, with yellow hole and slot
4 7 features.
/ /
v e Make the font of the part solid, with dashed hole and slot
features.

e Make the line width of the part edge normal, with thin hole and
slot features.

GRIP Fundamentals ©EDS Unigraphics NX 2
4-24 Student Guide Al Rights Reserved grap

More Two Dimensional Commands

&;¥_) z
r=0.25
rad | 94
(%) gt
‘Qrad
hgt/4
J s
[widi4 = —— wid/4 —
777
' v 4 7
wid 297%
Figure 4—12 Sheet Metal Part
All Rigig?sE ggserved g}ﬁgﬂfgﬁrgemms 4-25

More Two Dimensional Commands

(This Page Intentionally Left Blank)

7/
¢ 4

/ /
v

GRIP Fundamentals ©EDS Unigraphics NX 2
4-26 Student Guide Al Rights Reserved grap

Controlling Program Execution

Controlling Program Execution
Lesson 5

Objectives

e Use the commands for branching, logic, and looping.
e Build data checking into the user interface.
e Write error handling code.

e Write structured logic.

7
; 5
7

©EDS GRIP Fundamentals 5-1
All Rights Reserved Student Guide

Controlling Program Execution

Introduction

Up to this point, we have discussed GRIP programs that execute sequentially
from beginning to end. However, we typically want the computer to execute
different portions of code depending on various conditions. These conditions
may depend on information provided by the user or other stored values. The
commands for branching allow altering the flow of the program. When
overused, they can make programs difficult to maintain and understand.

Table 5—1 Branching, loop and logic Statements
Function Format
Branch always JUMP/labell:

Branch using the integer
value of the expression.

JUMP/ [label:]+, expression

Loop to label:. Iterate

DO/label:,index,$

from ’begin’ to ’end’ begin, end[,increment]

Logical IF IF/logical expression, $
GRIP statement
Block IF IFTHEN/logical expression

GRIP statements as required
[ELSEIF/logical expression

GRIP statements as required]
[ELSE

GRIP statements as required]
ENDIF

7
; 5
7

GRIP Fundamentals
Student Guide

©EDS

. . 2
All Rights Reserved Unigraphics NX

Controlling Program Execution

Suggested Labeling Guidelines

Most commands in Table 5—1 use labels. Labels can be thought of as tags that
identify special locations in your code. A label is a name which may precede
any GRIP statement (except the PROC/ statement). In GRIP, the following rules
apply for labels:

Labels can contain up to 32 characters.
The first six characters of each label must be unique.

All labels must start with an alphabetic character, with the remaining
characters alphanumeric.

There can be no blank characters.

A label must end with a colon (:) character.

NOTE GRIP allows a total of 1000 labels per subroutine. A DO

loop generates two labels, a CALL command generates
one label, and the IFTHEN/ELSE/ELSEIF/ENDIF uses
two labels plus one for every ELSEIF. These labels count
against the total you can use.

The following section describes a recommended labeling standard. These are
not rules and should not be interpreted as such.

1.

When reading a GRIP program, labels should “stand out”. It is
suggested that all labels start in column one, with remaining
statements starting after column eight.

7
; 5
7

©EDS GRIP Fundamentals 5-3
All Rights Reserved Student Guide

Controlling Program Execution

2. Each label should describe its purpose by using a mnemonic to
describe the purpose of the label. Mnemonics include:

BCKxxx: Precedes an interactive command, providing a
position for execution to return when the user
selects the Back option on the dialog box.

DOLxxx: Used to construct “DO” loops.

WHLxxx: Used to simulate “WHILE” loops, which are
common constructs available in other high level
programming languages

LBLxxx: A generic label to be used sparingly for a variety of
purposes including non—fatal error handling.

ERRxxx: Indicates code to be executed when an error
condition occurs. May precede a “MESSG”
statement.

FAIL: A position in a program or subroutine for use in
error handling when a fatal error is encountered.

RTN: Indicates the return point in a subroutine.
Precedes the “RETURN” statement.

CANCEL: Marks the end of a GRIP program. Precedes the
“HALT” statement.

7
; 5
7

GRIP Fundamentals ©EDS Unigraphics NX 2
5—4 Student Guide Al Rights Reserved grap

Controlling Program Execution

3. Use a sequential series of numbers as a suffix to the previously defined
mnemonics. This makes it easier for the reader to locate labels when
many labels are used. Alternate the numbers in even units of 10 when
writing the code, in order to leave room for inserting more labels. For
example:

BCKO010:
BCKO015:
WHLO020:
LBLO25:

DOLO030:

ERRO40:

The labels BCK015: and LBL025: can assume to have been added
after the code was originally written.

The rules for generating labels are not restrictive, allowing for a wide variety of
labeling styles. When programmers use different methods for naming labels,
understanding GRIP programs becomes difficult. You should follow a standard
labeling convention which can be easily understood by other programmers.

7
; 5
7

©EDS GRIP Fundamentals 5-5
All Rights Reserved Student Guide

7
; 5
7

Controlling Program Execution

JUMP: Unconditional Branching

Synopsis

Description

Parameters

Example

NOTE

JUMP/label:

This statement allows you to perform unconditional branching,
which causes the program to branch to the statement containing
the specified label. This feature is generally used to bypass
sections of the program which are controlled by conditional
branching statements or as the executable part of a logical IF
statement.

label:
Label to which program execution will jump.

This example demonstrates the use of the JUMP statement in
an IF statement. A JUMP statement is also used to skip over a
portion of the program which is only executed under certain
conditions.

1, JUMP/ALUM:
2, JUMP/STL:
3, JUMP/OTHR:

IF/mtype
IF/mtype
IF/mtype

ALUM:
dens = .100
JUMP/LBLO030:
STL:
dens = .289
JUMP/LBLO030:
OTHR:
PRINT/Density not defined’

LBL030:

In the example above, if the variable mtype is equal to 1,
the variable dens is assigned a value of .100 and the
statements between the labels STL: and LBLO030: are
bypassed.

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved graphics N.

Controlling Program Execution

JUMP: Conditional Branching

Synopsis

Description

Parameters

JUMP/label: +,[expression]

Conditional branching is the computed or conditional JUMP
statement that causes the program to branch to one of several
locations based on the integer portion of a supporting expression
or variable. The integer may be set in many ways, either by a
numerical expression (ntype = a+b) or by a GRIP interactive
statement such as PARAM, CHOOSE, etc.. If the number being
considered is not an integer (4.25), the integer portion of the
expression or variable, which is also referred to as the index, is
obtained by truncating without rounding in either direction (4.25
would be evaluated as 4). The resulting integer will cause the
program to branch to the label specified by that location in the
label list which may consist of up to 43 labels. If a label does not
exist in the indicated location (a field between two commas
L1:,L.2:,,L4:) the program will continue with the next statement in
the program. This statement is ignored if the resulting integer
value is a negative, is zero, or is greater than the number of labels
provided in the statement.

label: +

A desired number of unique label names to which the program will
branch. A label must end with a colon (:).

expression

An expression results in a numeric value. The numeric value may
be set by the expression or by a previous GRIP statement.

S
B2

/ /

A

©EDS GRIP Fundamentals 57
All Rights Reserved Student Guide

Controlling Program Execution

Example This example demonstrates the use of a JUMP statement to
branch based on the results of expressions in the statement.

JUMP/ALUM;, STL:,OTHR:, mtype

ALUM:
dens = .100
JUMP/LBLO030:
STL:
dens = .289
JUMP/LBLO030
OTHR:

PRINT/Density not defined’
LBLO030:

The three IF statements from the previous example are

replaced by a single conditional JUMP statement yielding the
same result.

e
75

A

GRIP Fundamentals ©EDS igraphics NX 2
5-8 Student Guide All Rights Reserved Unigraphics N

Controlling Program Execution

DO: Program Loop

Synopsis

Description

Parameters

NOTE

DO/label:,index variable,start,end[,increment]

The following provides an effective means of performing a given
operation a specified number of times. The operation
commonly referred to as a DO loop is a segment of the program
which starts with the statement containing the word DO,
followed by a slash and a label, and ends with the statement or
blank statement which starts with the specified label.

Additional DO loops, referred to as nested loops, may exist
inside of a loop, referencing either the same label or a separate
label. If a separate label is used in a nested loop, both the DO
statement and the specified label statement must exist within
the outer loop.

GRIP allows a total of 1000 labels per subroutine. A DO
loop generates two labels. These labels count against the
total you can use.

Acceptable Jump Situations:

e A jump may be made from a statement inside of a loop to
a label which is also inside of the loop.

e A jump may be made from a statement inside of a loop to
a label which is outside of the loop (this will terminate the
loop).

Unacceptable Jump Situation:

e A jump may not be made from a statement outside of a
loop to a label which is inside of a loop.

label:

Specifies either the last executable statement in the loop or a ,// /- /’,
blank statement following the last executable statement in the y 3/
loop. /Y

©EDS GRIP Fundamentals 5-9
All Rights Reserved Student Guide

Controlling Program Execution

index variable

A variable which registers the current value of the loop. When
the loop is entered, the index variable will be set to the start
value; when the loop is finished, the index variable will be equal
to the end value plus the increment value.

start

The starting value for the loop which may be either a constant,
an expression, or a variable.

end

The ending value for the loop which may be either a constant,
an expression, or a variable.

increment

The optional increment value for the loop which may be either a
constant, an expression, or a variable. If not specified the
increment default is 1.

Example This example demonstrates the creation of several points using
a nested DO loop.
Declarations ENTITY/pt(2,4)

NUMBER/delt(2),x(4),y(4).i,]

DATA/delt,—2,2
DATA/x,—.5,0,.5,0
DATA/y,0,—.5,0,.5

Do Statements DO/ENDO2:,i,1,2
DO/ENDOL1:,j,1,4

Geometry Definition pt(i,j)=POINT/delt(i) +x(j), y()
ENDO1:
ENDO2:
/77
/ /
/ S/
Y,
5-10 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Controlling Program Execution

+ +
+ + + +
+ +
POINTS CREATED POINTS CREATED
WHEN | = 1 WHEN | = 2

Figure 5—1 Nested DO loops

7
; 5/
7

©EDS GRIP Fundamentals 5-11
All Rights Reserved Student Guide

Controlling Program Execution

IF: Logical IF
Synopsis IF/logical expression,statement
Description This statement provides for the execution or exclusion of a

statement based on the results of a logical expression. If the
results of the logical comparison is true, for example: does 1
equal 1, IF/1==1, the following statement will be executed. If
the results of the logical comparison is false, for example: does 1
equal 2, IF/1==2, the following statement will not be executed.

The order of evaluation for the arithmetic and logical operators
is important in obtaining the desired results.

Order Operator

First Arithmetic Operators:

+ Addition

- Subtraction

* Multiplication
/ Division

** Exponentiation

Second | Logical Operators:

Equal to

Not equal to

Less than

Less than or equal
to

Greater than

>= Qreater than or
equal to

AN A
Vol

\Y

Third Boolean Operator:

NOT Complement
Fourth Boolean Operators:
AND Both
OR Either
;/////
75
7,
5-12 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Controlling Program Execution

Parameters

Example

NOTE

logical expression

A logical expression which consists of two values separated by a
logical operator. The expression may consist of any
combination of constants and numerical variables or any
combination of string literals and string variables. The following
table is a list of logical operators which perform the
comparisons (the symbols < and > represent the less than and
greater than symbols respectively).

Operator Comparison
== Equal to
<> Not equal to
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to

EDA’s are not allowed in logical expressions.

statement
Any executable GRIP statement such as:
JUMP/label:

A=1
DELETE/LN1

Exceptions are: DO and DECLARATION statements.

This example demonstrates the use of the logical IF statement.
Logical operations may be performed on numerical variables
and/or constants.

scoord=&SPOINT(In1)
ecoord=&EPOINT(In1)

IF/scoord(2)==ecoord(2), DELETE/In1

In the example above, the line In1 will be deleted if it is

horizontal.
S
/ /
79 7

A

©EDS GRIP Fundamentals 5-13
All Rights Reserved Student Guide

7
; 5
7

Controlling Program Execution

Example

Declarations

Example

The following example shows how logical operations may be
performed on an entity variable.

ENTITY/PT1, NT1

IF/PT1<>&NULENT,JUMP/LBLO020:
PT1=POINT/2,2
LBL020:
NT1=NOTE/DELTA,PT1,.25,.25,BILL OF
MATERIALS’
LBL040:

To avoid an error in the NOTE statement, the GPA &NULENT
is used in the IF statement to check if point PT1 exists. If it
does, execution will jump to label LBL020: and the note will be
created. Otherwise, PT1 will be created then the note will be
created.

This example demonstrates that logical operations may be
performed on string variables and/or string literals.

IF/partno<>&NULSTR, nt=NOTE/x,y,partno

In the example above, the GPA &NULSTR was used to check if
the string partno had a value to avoid an error in the NOTE
statement.

5-14 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Controlling Program Execution

Example

Declarations

If Statement

Declarations

If Statement

The previous examples have shown logical operations on simple
variables, constants, and string literals. Logical operations,
however, may also be performed on arrays or subranges of
arrays which are of similar type and size.

NUMBER/A(3),B(3)
DATA/A,1,2,3
DATA/B,1,4,3

IF/A==B, JUMP/LBLO010:
MESSG/'THE ARRAYS ARE NOT EQUAL
LBLO010:

Since A in the example above, which was set to 1, 2 and 3, is not
equal to B, which was set to 1, 4 and 3, the message THE
ARRAYS ARE NOT EQUAL will be displayed.

The logical array comparison in the program above would be
equal to the individual comparison in the program below.

NUMBER/A(3),B(3)
DATA/A,1,2,3
DATA/B,1,4,3

DO/DOL010:,1,1,3
IF/A(I)< >B(I), JUMP/LBL020:

DOLO010:
JUMP/LBLO030:
LBL020:
MESSG/'THE ARRAYS ARE NOT EQUAL
LBL030:
S
/ /
/ S’
v
©EDS GRIP Fundamentals 5-15

All Rights Reserved Student Guide

e
75

A

Controlling Program Execution

BLOCKIF: Block If
Synopsis IFTHEN/el
block1
[ELSEIF/e2
block2]
[ELSE
blockn]
ENDIF
Description The BLOCKIF statements allow you to conditionally execute

blocks (or groups) of GRIP statements. The four BLOCKIF
statements are:

o IFTHEN
o ELSEIF
« ELSE

o ENDIF

These statements are used in BLOCKIF constructs. A block is a
sequence of zero or more complete GRIP statements. Each
sequence is called a statement block.

Each BLOCKIF statement, except the ENDIF statement, has an
associated statement block. The statement block consists of all
the statements following the BLOCKIF statement up to (but not
including) the next BLOCKIF statement in the BLOCKIF
construct. The statement block is conditionally executed based
on the value(s) of the logical expression(s) in the preceding
BLOCKIF statements.

The IFTHEN statement begins a BLOCKIF construct. The
block following it is executed if the value of the logical
expression in the IFTHEN statement is true.

The ELSEIF statement is an optional statement that specifies a
statement block to be executed if no preceding statement block
in the BLOCKIF construct has been executed, and if the value
of the logical expression in the ELSEIF statement is true.

5-16

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved graphics N.

Controlling Program Execution

Parameters

NOTE

The ELSE statement specifies a statement block to be executed
if no preceding statement block in the BLOCKIF construct has
been executed. The ELSE statement is optional. However, if
the ELSE statement is present, its statement block must be
immediately followed by the ENDIF statement.

The ENDIF statement terminates the BLOCKIF construct.

GRIP allows a total of 1000 labels per subroutine. The
IFTHEN/ELSE/ELSEIF/ENDIF uses two labels plus one
for every ELSEIE. These labels count against the total
you can use.

IFTHEN

The BLOCKIF statement which begins the construct. It
evaluates the logical expression passed to it. If the expression is
true, it executes the accompanying block. Up to 32 levels of
IFTHEN statements can be nested per block as shown in

Figure 5-2.
Nest up to 32 levels per block
Single IFTHEN/e1
Statement IFTHEN/e1a
block— ENDIF
ENDIF Level 2
Level 1
Levels
1 IFTHEN
2 IFTHEN
2 ENDIF
1 ELSEIF
2 IFTHEN
3 IFTHEN
3 ENDIF
2 ENDIF
1 ENDIF

Figure 5—2 Levels of IFTHEN statements per block

el
The logical expression passed to the IFTHEN statement.

©EDS GRIP Fundamentals 5-17
All Rights Reserved Student Guide

7
; 5
7

e
75

A

Controlling Program Execution

Example

block1

A set of GRIP statements which are executed if the preceding el
expression is true.

ELSEIF

An optional BLOCKIF statement that specifies a statement
block to be executed if no preceding statement block of the
BLOCKIF construct has been executed, and if the value of the
logical expression in the ELSEIF statement is true. Each
IFTHEN construct can contain up to 36 ELSEIF statements.

e2
The logical expression passed to the ELSEIF statement.

block2

A set of GRIP statements which are executed if the preceding e2
expression is true.

ELSE

An optional BLOCKIF statement which is executed if no
previous statement block in the BLOCKIF construct has been
executed.

blockn

A set of GRIP statements which the system executes if no
previous statement block in the BLOCKIF construct has been
executed.

ENDIF
The BLOCKIF statement which terminates the construct.

The simplest BLOCKIF construct consists of the IFTHEN and
ENDIF statements. This construct conditionally executes one
statement block.

IFTHEN/a ==
MESSG/’ARRAY A IS EQUAL TO ARRAY B’
ENDIF

The statement first evaluates the logical expression a == b. If
this value is true, then the program displays the message
ARRAY A IS EQUAL TO ARRAY B. If the value is false,
then the statement block is not executed and control transfers to
the next executable statement after the ENDIF statement.

5-18

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

Controlling Program Execution

Example

Example

The following example contains a BLOCKIF construct using the
ELSEIF statement.

IFTHEN/A ==

MESSG/ Array A is equal to array B’
ELSEIF/A ==

MESSG/ Array A is equal to array C’
ENDIF

If the value of a is equal to b, the program displays the message
Array A is equal to array B. If the value of A is equal to C, then
the program displays the message Array A is equal to array C.
But if neither expression is true, neither statement block is
executed and control transfers to the next executable statement
after the ENDIF statement.

The following example contains a BLOCKIF construct using
both the ELSEIF and ELSE statements.

IFTHEN/A > B

MESSG/ Array A is greater than array B’
ELSEIF/A < B

MESSG/ Array A is less than array B’
ELSE

MESSG/ Array A is equal to array B’
ENDIF

In this case, if the value of A is greater than B, the program
displays the message Array A is greater than array B. 1f the value
of a is less than b, the program displays the message Array A is
less than array B. But if neither case is true (the value of a is
equal to b), then the program displays the message Array A is
equal to array B.

The following example contains a BLOCKIF construct using
several ELSEIF statements with the ELSE statement.

IFTHEN/a>b
d=b
f=a-b $$ End of first block

ELSEIF/a>c
d=c
f=a-c $$ End of the second block

ELSEIF/a>z V77
/ /

d=z 57

f=a-z $$End of third block 7,/

©EDS GRIP Fundamentals 5-19
All Rights Reserved Student Guide

Controlling Program Execution

ELSE
d=0
f=a $$ End of fourth block

ENDIF

There are four statement blocks in this example (one for each
BLOCKIF statement except ENDIF). If a is greater than b, the
first block is executed. If a is not greater than b but is greater
than c, the second block is executed. If a is not greater than b
or c but is greater than z, the third block is executed. If a is not
greater than b, ¢, or z, the fourth block is executed.

Example The following example illustrates a nested BLOCKIF construct.
IFTHEN/A=B
L=LINE/A,B+1

ELSEIF/A>B
FTHENE > € eac Nested BLOCKIF: Note
ELSE that this block may con-

L = LINE/A B tain up to 36 ELSEIF
ENDI F statements independent

of the outer block.

ELSE
L=LINE/B,A
ENDIF
S
/ /
/ 5
Y,
5-20 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Controlling Program Execution

IF Boolean Operators

The operator AND functions the same in a logical IF and IFTHEN statement as
the conjunction AND does in a sentence. For example, if an operation
depended on the results of the two simple expressions A==B and C==D, the
two logical IF statements, IF/A==B and IF/C==D, with the necessary labels
and branching statements could be programmed to accomplish this task.
However, these two simple expressions could be combined to form the
compound logical IF statement, IF/A==B AND C==D and thereby reduce
the amount of necessary programming.

Example Using the AND boolean

The following code accomplishes a task by using a sequence of logical
IF statements with simple expressions.

IF/A<>B, JUMP/A1:

IF/C==D, PRINT/BOTH EXPRESSIONS ARE
TRUFE’
Al:

The same task can be accomplished using a single logical IF statement
with a boolean operator.

IF/A==B AND C==D, §
PRINT/BOTH EXPRESSIONS ARE TRUF’

Like the operator AND, the operator OR also functions the same in a logical IF
and IFTHEN statement as the conjunction OR does in a sentence. For
example, if an operation depended on the results of the two simple expressions
A==B or C==D, the two logical IF statements, IF/A==B or IF/C==D, with
the necessary labels and branching statements could be programmed to
accomplish this task. However, these two simple expressions could be
combined to form the compound logical IF statement, [IF/A==B OR C==D
and thereby reduce the amount of necessary programming.

7
; 5
7

©EDS GRIP Fundamentals 5-21
All Rights Reserved Student Guide

Controlling Program Execution

Example Using the OR boolean

The following example accomplishes a task by using a sequence of
logical IF statements with simple expressions.

IF/A==10,JUMP/LBLO010:
IF/B<>10,JUMP/LBL020:
LBLO10:
D=C/(A+B)
LBLO020:

The following accomplishes the same task by using a logical IF
statement with a compound expression.

IF/A==10 OR B==10, D=C/(A+B)

Example Using the NOT boolean

The operator NOT takes the result of the previously evaluated logical
expression and compliments or reverses it. For example:

IF/NOT(A==B), JUMP/LBL100:

The benefit of this feature is that both conditions of an expression may
be tested without changing the logical operators.

7
; 5
7

GRIP Fundamentals ©EDS Unigraphics NX 2
5-22 Student Guide Al Rights Reserved grap

Controlling Program Execution

Error Handling

Many statements in the GRIP programming language contain the IFERR minor
word for trapping error conditions. The IFERR word is used with a label.
When an error occurs, program execution will be altered, resuming at the
statement immediately following the IFERR label.

There are several ways to write error handling code depending on whether the
error is considered a fatal error or a recoverable error, the complexity of the
program, etc. This section will therefore explain a variety of techniques that
can be used to handle errors with GRIP commands.

Non—Fatal Error Recovery

Often errors are encountered that may be due to incorrect information selected
or entered by the user. When these problems occur, your program should
explain what happened and provide the opportunity to correct the problem.
The coding example below illustrates this technique.

Example IFERR for non fatal errors

ENTITY/ crv(2), ref_pt, int_pt
NUMBER/ resp, xc, yc, zc
BCKO010:
MASK/ 3,5,6,7,8,9
IDENTY/ ’Select TWO Curves for Intersection’,$
CURSOR, x¢, yc, zc, crv, resp

JUMP/ BCKO010:, CANCEL:, resp

ref pt = POINT/ xc, yc, zc

int_pt = POINT/ ref_pt, INTOE crv(1), crv(2),$
IFERR, LBL020:

JUMP/ LBL030: $$ No error finding INTOF, proceed.
LBL020: $$ Could not intersect curves.
DELETE/ ref pt
MESSG/ ’Could not create intersection between curves’,$
"Please try again.’
JUMP/ BCKO010:
LBLO030:

$$ Normal processing.

DELETE/ ref pt

' 7SS

. / /
CANCEL: / 57

HALT 7./

©EDS GRIP Fundamentals 5-23
All Rights Reserved Student Guide

7
; 5
7

Controlling Program Execution

Fatal Error Recovery, Method 1

Often, when an error is encountered, it is not possible to continue the program.
In this case, you should make the person running the program aware of the
problem and halt the program. The example below shows a simple way of
doing this.

Example IFERR for fatal errors
ENTITY/ crv(2), ref_pt, int_pt

$$
$$ A section of code creates crv(1..2) and ref pt

$$
pt = POINT/ INTOE, crv(1), crv(2), IFERR, ERR100:

$$ Now fillet the two curves.

$$
fil = FILLET/ crv(1), crv(2), CENTER, ref pt, $
RADIUS, .25, IFERR, ERR110:
$$
%% Remainder of normal processing
JUMP/ CANCEL:
ERR100:
MESSG/ ’Could not intersect curves’
JUMP/ CANCEL.:
ERR110:
MESSG/ ’Could not create fillets’
DELETE/pt
CANCEL:
HALT

The error handling technique described above is efficient for short programs.
However, for larger applications, many error labels and MESSG statements
might prove cumbersome. The method on the next page addresses this
problem.

5-24

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

Controlling Program Execution

Fatal Error Recovery, Method 2

In this example, the multiple message statements of the previous example have
been removed through the use of a string array (ERRMSG) which stores error
messages. Before each command which might cause an error, the index (errno)
is set to a value corresponding to a position in the error message array. The
FAIL: label is a common point where control will be passed by all statements
using the IFERR word when an error occurs.

Example IFERR for fatal errors; Text array of messages

ENTITY/ crv(2), ref_pt, int_pt
NUMBER/ errno
STRING/ ERRMSG(10, 60)

DATA/ ERRMSG, $§ $$ Error messages for fatal errors
’Could not intersect curves’,
’Could not create fillets’, $
’Could not merge template part’, $
’Could not file part’

$$

%% A section of code creates crv(1..2) and ref pt
errno = 1

pt = POINT/ INTOF crv(1), crv(2), IFERR, FAIL:

$$ Now fillet the two curves.
$$
errno = 2
fil = FILLET/ crv(1), crv(2), CENTER, ref pt, $
RADIUS, .25, IFERR, FAIL:

$$
%% Remainder of normal processing
JUMP/ CANCEL:
FAIL:
MESSG/ ERRMSG(errno)
CANCEL:
HALT 7
/ /
/ 5/
7/,

©EDS GRIP Fundamentals 5-25
All Rights Reserved Student Guide

Controlling Program Execution

(This Page Intentionally Left Blank)

S
/B2

/ /

A

GRIP Fundamentals ©EDS igraphics NX 2
5-26 Student Guide All Rights Reserved Unigraphics N

Basic Interactive Commands

Basic Interactive Command's

Lesson 6 /777,
/ /
/ 6 /
A,
Objectives

e Demonstrate an understanding of the types of interactive commands
available.

e Use interactive commands in conjunction with the branching and logic
commands to build a user interface.

©EDS GRIP Fundamentals 6—1
All Rights Reserved Student Guide

S
Y ”
76

Y,

Basic Interactive Commands

Interactive Commands

A variety of interactive commands are available in the programming language.
These commands display menus on the dialog box and graphics screen for the
user to enter information. Many of these commands provided the Back and
Cancel options so that the user can reverse a previously made decision or exit
the GRIP program.

Table 6—1 Interactive commands

Write to Dialog Box MESSG/[TEMP, |string1][,string2]

Screen position pick POS/ 'message’, x, y, z, resp

Screen position menu GPOS/ 'message’, X, y, z, resp

Obtain real and/or PARAM/ 'message’,

integer information {’option’[,INT], variable}

[, ALTACT, ‘'message’,] resp
6—2 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Basic Interactive Commands

Name

Synopsis

Description

Example

Declarations

Geometry Definition

MESSG Write to Dialog Box
7
: . 6/
MESSG/[TEMP,]stringl [,string2] y
Y,

This statement displays messages in a dialog box or on the status line.
It can be used to tell the user during program execution that certain
tasks have been accomplished, or that the program is working on a
statement which may take some time to execute.

CAUTION We do not recommend using the asterisk character (*)
in menu prompts or menu options.

NOTE Strings may automatically convert to a string where the
first character is uppercase followed by lowercase characters if the
string exists in the Native Language Menu (NLM) database.

TEMP

Minor word that indicates that program execution is to continue and
that the specified message is to be displayed on the status line. If
omitted, program execution is halted until OK is chosen.

stringl,string2
Strings which may consist of up to 60 characters each. These strings

are displayed in a dialog box with the optional second parameter
under the first. Only two strings are allowed per message.

This example demonstrates the creation of a sculptured surface. The
MESSG statement is used to tell the user during program execution,
that the surface is being calculated.

ENTITY/L(3),P(4),SPL,SCULPT

L(1)=LINE/0,0,0,4,2,1
L(2)=LINE/0,0,0,0,4,1
L(3)=LINE/0,4,1,5,4,2
P(1)=POINT/ENDOFE,XLARGE,1L(1)
P(2)=POINT/4,2,.5
P(3)=POINT/4.25,3,1
P(4)=POINT/ENDOFE,XLARGE,L(3)
SPL=SPLINE/P

DELETE/P

©EDS GRIP Fundamentals 6—3
All Rights Reserved Student Guide

Basic Interactive Commands

First Message MESSG/TEMP’CALCULATING SURFACE’
'////// SCULPT=SSURF/PRIMA,L(1),L(3),CROSS,L(2),SPL

6 /
/ /
Y,
7 Second Message MESSG/TEMP’SURFACE CREATED’

Third Message MESSG/'SEL EC TO CONTINUFE’

The first MESSG statement displays the message until the surface is
created and the second MESSG statement is executed. Since the
TEMP minor word is used, the program proceeds automatically. The
third MESSG statement does not contain the TEMP minor word,
therefore the program pauses until OK is chosen.

GRIP Fundamentals ©EDS Unigraphics NX 2
6—4 Student Guide Al Rights Reserved grap

Basic Interactive Commands

Typical Interactive Menu Flow

The following outline provides a methodology for adding interactive commands

to a GRIP program.

e Back Label

BCKO010:

e Interactive Command

POS/
GPOS/

CHOOSE/
MCHOOS/
PARAM/

IDENT/

TEXT/

e Interpret the Interactive Response

JUMP/

or

IFTHEN/
ELSEIF/

ELSE/
ENDIF

e Act on the Response or Parameters Entered Interactively

e Cancel Label

CANCEL:

HALT

©EDS
All Rights Reserved

GRIP Fundamentals 6—5
Student Guide

/S
Y ”
v /

Y,

S
Y ”
76

Y,

Basic Interactive Commands

The last field in each interactive command is a "response’. This is a numeric
variable which is assigned a value based on the user’s action. Each command
assigns different numeric variables to the response field. Most of the
interactive commands should be followed with a JUMP or block IF statement to

control program branching.

Example
BCKO010:
CHOOSE/ * Sel ect
"X AXI' S
Y AXI S
"Z AXI'S
JUWVP/ BCKO010:
LBLO20: ,

Interactive command using Conditional Branching

Principle Axis',$

, $

, $

, resp

, CANCEL: ,,, $
LBLO30:, LBLO40:, resp

LBL0O20: (Option 1)

LBLO30: (Option 2)

LBLO40: (Option 3)

Example
BCKO10:
CHOOSE/ ™ Sel ect
"X AXIS
'Y AXIS
"Z AXI'S
| FTHEN resp ==
JUWP/ BCKO10
ELSEIF/ resp ==
JUWP/ CANCEL
ELSEIF/ resp ==
(Option 1)
ELSEI FI resp == 6
(Option 2)
ELSEI FI resp == 7
(Option 3)
ENDI F
GRIP Fundamentals

Student Guide

Interactive command and a Block IF

Principle Axis',$
, 3

, 3

, resp

$$ X AXI'S

$$ Y AXI'S

$$ Z AXIS

©EDS Unigraphics NX 2

All Rights Reserved

Basic Interactive Commands

The interactive commands and the conditional branch statement (JUMP/) for
the valid responses are as follows:

POS/ 'message’, X, y, z, resp

JUMP/ back, cancel, not used, not used, pos def, resp
GPOS/ 'message’, x, y, z, resp

JUMP/ back, cancel, OK, not used, pos def, resp

PARAM/ 'message’, {’option’ [,INT], variable}
[, ALTACT, ‘'message’,] resp

JUMP/ back, cancel, OK, alt—action, resp

IDENT/ 'message’, ent list [,CNT,count] [, CURSOR, x, y, z]
[LMEMBER, {ON|OFF}], resp

JUMP/ back, cancel, OK, resp

TEXT/ ‘'message’, string—variable, [ALTACT, message’,]
resp [, DEFLT]

JUMP/ back, cancel, OK (no text), alt—action, OK (text), resp
CHOOSE/’string list’, [DEFLT, n,] [ALTACT, 'message’,] resp
JUMP/ back, cancel, not used, alt—action, selection, resp

MCHOOS/ primary string, menu options, response array
[, ALTACT, ‘'message’], response variable

JUMP/ back, cancel, OK, alt—action, resp

©EDS GRIP Fundamentals 6—7
All Rights Reserved Student Guide

/S
Y ”
7 6 7

Y,

S
Y ”
76

Y,

Basic Interactive Commands

Program Outline using Interactive Statements

GRIP Fundamentals
Student Guide

resp

resp

resp

resp

resp

BCKO010:

Interactive Statement 1

JUMP/ BCKO010:, CANCEL:
BCK020:

Interactive Statement 2

JUMP/ BCKO010:, CANCEL:
BCKO030:

Interactive Statement 3

JUMP/ BCKO020:, CANCEL:
BCKO040:

Interactive Statement 4

JUMP/ BCKO030:, CANCEL:
BCKO50:

Interactive Statement 5

JUMP/ BCKO040:, CANCEL:
CANCEL : 4

/]

©EDS
All Rights Reserved

Unigraphics NX 2

Basic Interactive Commands

This example illustrates labels combined with the interactive programming

using the outline described on the previous page. S
/ /

6
Example Program with Interactive Commands ;//////

ENTI TY/ hol e(100)
NUMBER/ i, hole radius, resp, X, vy, z

i =0
BCKO10:
PARAM ' Specify hole radius’, $
"Radi us’, hole_radius, resp
JUWP/ BCKO10:, CANCEL:, , resp
$$
$$ Check for negative or zero hol e radius.
$$
| F/ HOLE_RADI US, BCKO010: , BCK0O10: ,
BCKO020:
POS/ 'Indicate hole location, $
X, Y, z, resp
JUWP/ BCKO10:, CANCEL:, , , resp
$$
$$ Create hole.
$$
hol e(i=i+1) = CRCLE x, y, z, hole_radius
| FTHEN i <= 99
JUWP/ BCKO10:
ELSE/
MESSG ' Max nunber of hol es generated,’,$
"term nating program’
ENDI F
CANCEL:
HALT
First Message MESSG/TEMPCALCULATING SURFACFE’

SCULPT=SSURF/PRIMA,L(1),L(3),CROSS,L(2),SPL

Second Message MESSG/TEMP’SURFACE CREATED’
Third Message MESSG/’SEL EC TO CONTINUFE’
©EDS GRIP Fundamentals 6—9

All Rights Reserved Student Guide

S
Y ”
76

Y,

Basic Interactive Commands

The interactive commands prompt the user for input, temporarily stopping the

GRIP program until a response is obtained. “Interact” means that you do one
or more of the following:
e Press Back, Cancel, OK, or enter information on the dialog box.
e Select a screen position with the cross hairs on the graphics screen.
e Choose a method from the Generic Point Menu, then select a point.
e Set the values for numerical parameters.
e Select one or more objects on the graphics screen.
e Enter textual information.
e Choose an option (or options) from a menu on the dialog box.
e Read a message on the dialog box or graphics screen.
Table 6—2 Table of interactive commands
Response Values Returned by the Interactive Command
Command 1 2 3 4 5
POS Back |Cancel |Not Used Not Used Pos Defined
GPOS Back |Cancel |OK Not Used Pos Defined
PARAM Back |Cancel |OK Alternate
Action
IDENT Back |Cancel |OK
TEXT Back |Cancel |OK (Re- Alternate OK (Re-
turn) No Action turn) Text
Text Entered Entered
CHOOSE |[Back [Cancel |[Not Used Alternate Menu Selec-
Action tion (5..18)
MCHOOS ([Back [Cancel [OK Alternate
Action
6—10 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide

All Rights Reserved

Basic Interactive Commands

POS: Indicate Screen Position Point

Synopsis

Description

277
76
POS/’ message’,x—coord,y—coord,z—coord,response ’///A

This statement allows three coordinate values to be obtained by
using the screen position indicator which will automatically
appear upon execution of this statement.

CAUTION We do not recommend using the asterisk
character (*) in menu prompts or menu options.

POS works with the BACK and CANCEL buttons. If BACK is
selected during program execution while the POS statement is
pending, the value of 1 is assigned to the response variable.
CANCEL will cause 2 to be assigned. The values 3 and 4 are
not used, and may not be used. Once the position is defined,
the value of 5 will be assigned to the response variable and
program execution will continue.

Below is a list of values assigned to the response variable:

Response Assignment
Back 1
Cancel 2
Not Used 3
Not Used 4
Position Defined 5

‘’message’

A string which represents the title of the menu you want to
display. The string can contain up to 40 characters.

x—coord,y—coord,z—coord

Three variables which will be assigned the coordinate values
obtained from the screen position indicated by the user during
program execution.

response

A variable which will be assigned a numerical value based on
the user response.

©EDS GRIP Fundamentals 6—11
All Rights Reserved Student Guide

Basic Interactive Commands

Example This example demonstrates the creation of a rectangle using the
'////// POS statement which prompts the user to indicate the diagonal

/ " .
76 4 corner screen position points.

/
7
Y Dectarations ENTITY/L(4)

BCKO010:
POS/Define First Corner’,$
X1,Y1,Z1,RSP
JUMP/BCKO010:,CANCEL.:,,,,RSP
BCKO020:
POS/ Define Second Corner’,$
X2,Y2,72, RSP
JUMP/BCKO010:,CANCEL.:,,,,RSP

L(1)=LINE/X1,Y1, X2,Y1
L(2)=LINE/X2,Y1, X2,Y2
L(3)=LINE/X2,Y2, X1,Y2
L(4)=LINE/X1,Y2, X1,Y1

CANCEL:
HALT

CREATED RECTANGLE—\

*

N POS

Figure 6—1 Use of the POS statement to create a rectangle

GRIP Fundamentals ©EDS igraphics NX 2
6—12 Student Guide All Rights Reserved Unigraphics N

Basic Interactive Commands

GPOS: Indicate Generic Point Position

Synopsis

Description

'//////
76
GPOS/’message’,x—coord,y—coord,z—coord,response ’/// A

The following allows three coordinate values to be obtained via
the Point Subfunction menu. For more information on the Point
Subfunction menu, refer to the Unigraphics Essentials manual.

CAUTION We do not recommend using the asterisk
character (*) in menu prompts or menu options.

The GPOS statement works with the Back, OK, and Cancel
options. If Back is selected during program execution while the
GPOS statement is pending, the value of 1 is assigned to the
response variable. Cancel will cause 2 to be assigned. OK will
cause 3 to be assigned. The value of 4 is not used, and may not
be used.

Once the position is defined, the value of 5 will be assigned to
the response variable and program execution will continue.

Below is a list of values assigned to the response variable:

Response Assignment
Back 1
Cancel 2
OK 3
Not used 4
Position Defined 5

’message’

A string which represents the title of the menu you want to
display. The string can contain up to 40 characters.

x—coord,y—coord,z—coord

Three variables which will be assigned the coordinate values
obtained from the generic point menu.

response

A variable which will be assigned a numerical value based on
the user response.

©EDS GRIP Fundamentals 6—13
All Rights Reserved Student Guide

Basic Interactive Commands

Example This example demonstrates the creation of a rectangle using the
77 GPOS statement to prompt for the diagonal corner points.

v v
26 7 Declarations ENTITY/L(4)
s
BCKO010:
GPOS/ Define First Corner’,$
X1,Y1,Z1,RSP
JUMP/BCKO010:,CANCEL.:,,,,RSP
BCKO020:
GPOS/ Define Second Corner’,$
X2,Y2,72,RSP
JUMP/BCKO010:,CANCEL.:,,,,RSP

LINE/X1,Y1,71, X2,Y1,Z1
LINE/X2,Y1,71, X2,Y2,71
LINE/X2,Y2,71, X1,Y2,7Z1
L(4)=LINE/X1,Y2,71, X1,Y1,Z1

CC
W=
o

CANCEL:HALT

GRIP Fundamentals ©EDS ; .
6-14 Student Guide All Rights Reserved Unigraphics NX 2

Basic Interactive Commands

PARAM: Enter Parameters

Synopsis

Description

'//////
PARAM/ message’,{’option’[,INT],variable,} + 76
[LALTACT,’message’,]response ’///A

This statement creates a data entry menu which is displayed on
the dialog box and allows the user to interactively assign
numerical values to variables, which are associated with options
in the menu.

CAUTION We do not recommend using the asterisk
character (*) in menu prompts or menu options.

PARAM works with the Back, OK, Alternate Action, and Cancel
buttons on the Unigraphics. If Back is selected during program
execution while the PARAM statement is pending, the value of

1 is assigned to the response variable. Cancel will cause 2 to be
assigned. OK will cause 3 to be assigned. Alternate Action will

cause a value of 4 to be assigned.

You can create an Alternate Action option by using the minor
word ALTACT, followed by a message, as the parameter just
before the response variable. The ALTACT message displays at
the bottom of the dialog box when the menu is displayed during
statement execution. You can make the message up to forty
characters long.

Below is a list of values assigned to the response variable:

Response Assignment
Back 1
Cancel 2
OK 3
Alternate Action 4

‘’message’

A string which represents the title of the menu you want to
display. The string can contain up to 40 characters.

’option’

Each option defined will be displayed on the menu created by
the PARAM statement. The PARAM statement may contain a
maximum of 14 options, each consisting of up to 15 characters.
Options are truncated on some design stations.

©EDS GRIP Fundamentals 6—15
All Rights Reserved Student Guide

S
Y ”
76

Y,

Basic Interactive Commands

INT

Minor word that indicates that the entered value must be an
integer. This will be indicated in the menu by the absence of a
decimal point in the assigned value.

variable

The variables which will be assigned the entered values. The
PARAM statement may contain a maximum 14 variables; one for
each of the options programmed.

ALTACT

Minor word that indicates that an alternate action message will
be displayed as the last option in the dialog box. If Alternate
Action is selected, the response variable will equal 4.

’message’

A string or string variable which represents the ALTERNATE
ACTION message. The string can contain up to 40 characters.

response

A variable which will be assigned a numerical value based on
the user response.

6-16

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

Basic Interactive Commands

Example

Declarations

This example demonstrates the use of the PARAM statement to

create a user—defined menu. S/
/
NUMBER/dia, rad, nholes 7 6 7
, Y,
dia=.375
rad=4.5
nholes=8
BCKO10:

PARAM/ Circular Hole Pattern’,$
"Hole Diameter’,dia,$
"Radius’,rad,$
"No. of Holes’, INT,nholes,RSP

JUMP/BCKO010:,CANCEL:,,RSP

The previous program segment would display the following
menu on the cue line and dialog box.

Cue: Circular Hole Pattern

Hole Diameter
Radius o 4.5000¢
Mo. of Holes 8

QK Back | Cancel

Figure 6—2 Menu displayed on the cue line and dialog box for the given example

The last option above does not have a decimal point
because the minor word INT was included before the
variable in the PARAM statement.

©EDS GRIP Fundamentals 6—17
All Rights Reserved Student Guide

S
Y ”
76

Y,

Basic Interactive Commands

Activity: Interactive L—Shape

Modify the program you wrote for Activity 1 to include the following interactive
commands:

Follow these directions.

1 Add an interactive command to allow the system user to
enter the dimensions for this figure.

1 Add an interactive command to allow the system user to
indicate the coordinates of the lowest, leftmost corner of the
figure. These coordinates will be used for the x and y values.

When you finish the assignment, demonstrate the program to
your instructor.

GRIP Fundamentals ©EDS Unigraphics NX 2
6—18 Student Guide Al Rights Reserved grap

Advanced Interactive Commands

Advanced Interactive Commands

Lesson 7
Objectives
e Demonstrate an understanding of the types of interactive commands ,
available. i
/ 7 4
/ 4

e Use interactive commands in conjunction with the branching and logic 7,/
commands to build a user interface.

©EDS GRIP Fundamentals 7-1
All Rights Reserved Student Guide

Advanced Interactive Commands

Interactive Commands

A variety of interactive commands are available in the programming language.
These commands display menus on the dialog box and graphics screen for the
user to enter information. Many of these commands provided the Back and
Cancel options so that the user can reverse a previously made decision or exit
the GRIP program.

Table 7—-1 Advanced Interactive commands

v Function Format
/ 7 4
ﬁ/ " /’ Object selection IDENT/ 'message’, ent list
’ [,CNT,count] [,CURSOR, x, y, z]
[LMEMBER, {ON|OFF}], resp
Obtain textural data TEXT/ 'message’, string—variable,
[ALTACT, message’, |resp
[,DEFLT]
Select one item from CHOOSE/’string list’, [DEFLT, n,]
a menu list [ALTACT, 'message’,] resp
Select multiple items MCHOOS/ primary string,
from a menu list menu options, response array

[, ALTACT, ‘'message’], resp

GRIP Fundamentals ©EDS ioraphics NX 2
7-2 Student Guide All Rights Reserved Unigraphics N.

Advanced Interactive Commands

IDENT: Select Objects

Synopsis

Description

NOTE

IDENT/message’[,(SCOPE,{WORK|ASSY|REF}],
obj list[,CNT,count]
[,CURSOR,x—coord,y—coord,z—coord]
[LMEMBER,{ON | OFF}],response

This statement allows objects selected by the user interactively
to be placed in an object list.

IDENT works with the Back, OK, and Cancel options of

Unigraphics. If Back is selected during program execution :// 7 /;
while the IDENT statement is pending, the value of 1 is assigned / 7
to the response variable. Cancel will cause 2 to be assigned. Y

OK will cause 3 to be assigned.

CAUTION We do not recommend using the asterisk
character (*) in menu prompts or menu options.

Below is a list of response values assigned to the response
variable:

Response Assignment
Back 1
Cancel 2
OK 3

The IDENT statement will cause the system to display the Class
Selection Subfunction dialog box. Also the 'message’ will be
displayed in the cue line. For more information on the Class
Selection Subfunction refer to the Unigraphics Essentials
manual.

If the object list is a simple object variable or a single
object of an object array (OBJ(1) of OBJ(10)), the class
selection menu will not appear, but the crosshairs will be
displayed and only a single object selection will be
allowed.

message

A string which represents the title of the menu you want to
display. The string can contain up to 40 characters.

©EDS GRIP Fundamentals 7-3
All Rights Reserved Student Guide

Advanced Interactive Commands

SCOPE

Minor word which specifies the scope of object selection. ASSY
is the default.

WORK

Allows you to select only objects which belong to the work part.
This includes immediate components of the work part. If you
select an object occurrence, the prototype is returned.

ASSY
Allows you to select any object or object occurrence in the
S, assembly. No scope restrictions are applied.
/ 7 4
/ 4 REF
/Y

Allows you to select objects which belong to the work part or its
subassembly. If you select an object occurrence, the prototype
is returned.

obj list
An object list or array which will be assigned the selected
objects.

NOTE If a group is selected, the object list or array must be large
enough to contain the group plus the objects in the group.
For example, an object list or array of four would be
necessary to hold a group consisting of three objects.

CNT

Minor word that indicates that a count of objects selected is
desired.

count

A variable which will be assigned the number of objects
selected.

CURSOR

Minor word that indicates that the coordinates of the screen
position used for the selection of an object are to be retained.

x—coord, y—coord, z—coord

Three variables which will be assigned the coordinates of the
screen position used for the selection of an object. The assigned
value of these variables may be unpredictable if a technique
other than cursor is used.

GRIP Fundamentals ©EDS Unigraphics NX 2
7-4 Student Guide Al Rights Reserved grap

Advanced Interactive Commands

MEMBER

Minor word that indicates that the parameter in the following
field controls the status of member selection. This option is
most important when the user is not prompted with the Class
Selection Dialog (where the member selection status could be
changed). This option has an effect when single selection is
used.

If the member parameter is not specified, the default is ON
unless selection of either groups or components is enabled. If it
is enabled, member selection is automatically OFF.

on 7

/ /
Minor word that indicates that member selection is on. This 7/
allows you to select members of groups or components without
selecting the group or component.

OFF

Minor word that indicates that member selection is off. When
you select a member of a group or component, the entire group
or component is selected.

response

A variable which will be assigned a numerical value based on
the user response.

©EDS GRIP Fundamentals 7-5
All Rights Reserved Student Guide

Advanced Interactive Commands

Example

Declarations

7
;7
Y,

NOTE

This example demonstrates the use of the IDENT statement to
delete up to 25 user selected objects.

ENTITY/OBJ(25)
BCKO010:
IDENT/Select Objects to Delete’,$
OBJ,CNT,NUM,RESP
JUMP/BCKO010:,LBL020:,,RESP
DELETE/OBJ(1.NUM)
LBL020:

Execution of the IDENT statement will cause the following
Class Selection Dialog menu to be displayed.

Cue: Select Objects to Delete

E E
Class Selection

Mame

Filter Methods
Type Color
Other

Layer
Reset

Rectangle/Polyqon Method
Inside/Crossing

Phr e Lol
Select All
Chain Polygon

QK Back | Cancel
E E

Figure 7—1 Class selection dialog

If the number of objects selected exceeds the object array
size, the message “TOO MANY OBJECTS” will appear
on the dialog box when the OK key is depressed. To
continue, press the OK again. When this error occurs,
the variables will be set as follows:

The value returned in the response variable will be equal to
zero(0).

7—6 GRIP Fundamentals ©EDS
Student Guide

] ics NX 2
All Rights Reserved Unigraphics N.

Advanced Interactive Commands

e The count variable, if used, will reflect the number of objects
that the user attempted to select.

e The object array passed to the IDENT statement will contain
identifiers to selected objects. For example, consider the
example above where an object array with a dimension of 25 is
used. If the user attempts to select 100 objects, an error
message will be displayed and the object array will contain the
identifiers to the first 25 selected objects.

7,
/ /
7L

©EDS GRIP Fundamentals 77
All Rights Reserved Student Guide

:////,

/

/ 4
Y,

Advanced Interactive Commands

TEXT: Enter Text

Synopsis

Description

TEXT/message’,string variable[,ALTACT,’message’],
response[,DEFLT]

This statement creates a data entry menu which is displayed on
the dialog box, allowing the user to interactively assign
characters to a string variable.

CAUTION We do not recommend using the asterisk
character (*) in menu prompts or menu options.

TEXT works with the Back, Cancel, and Alternate Action
options in Unigraphics. When one of these options is selected
during program execution while the TEXT statement is pending,
the system will assign the following value to the response
variable:

Response Assignment
Back 1
Cancel 2

OK or Return - no text 3
entered

Alternate Action

OK or Return - text 5
entered

You can create an Alternate Action option by using the minor
word ALTACT, followed by a message, as the parameter just
before the response variable. The ALTACT message displays at
the bottom of the dialog box when the menu is displayed during
statement execution. You can make the message up to forty
characters long.

‘message’

A string which represents the title of the menu you want to
display. The string can contain up to 40 characters.

string variable

A string variable which will be assigned the input characters. If
no text is entered, a null string variable will exist.

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

Advanced Interactive Commands

ALTACT

Minor word that indicates that an ALTERNATE ACTION
message will be created on the dialog area during statement
execution. If ALTERNATE ACTION is selected, the response
variable will equal 4.

’message’

A string or string variable which represents the ALTERNATE
ACTION message. The string can contain up to forty
characters.

response

A variable which will be assigned a numerical value based on
the user response.

DEFLT

Minor word that indicates that OK can be selected to accept
text which has been previously assigned to the string variable
specified. The contents of the string variables will be displayed
by the TEXT statement. The user may either accept the text or
type in new text. If the DEFLT Minor word is not specified, text
which may have been assigned to the string variable will not be
displayed. If OK or Return are used to accept the default text,
the value of 3 will be assigned to the response variable.

©EDS GRIP Fundamentals 7-9
All Rights Reserved Student Guide

7
;7
Y,

Advanced Interactive Commands

Example This example demonstrates the use of the TEXT statement.
Declarations STRING/dwgno(30)
dwgno = "72A5001’ $$ Assign a default value
BCKO010:

TEXT/ Enter Drawing Number’, dwgno, resp, DEFLT
JUMP/ BCKO010:, CANCEL:, resp

PRINT/ 'The Drawing Number is *+dwgno

/Y The TEXT statement in the previous program segment would

Y display the following menu. Notice the default text *72A5001’

7/ appears in the dia}og box because the DEFLT wqrd was psed. If
the DEFLT word is not used, the text entry area in the dialog
box would be blank.

Cue: Enter Drawing Number

T2a5001]

QK Back | Cancel

Figure 7—2 Menu displayed using the TEXT statement

GRIP Fundamentals ©EDS igraphics NX 2
7-10 Student Guide Al Rights Reserved Unigraphics N

Advanced Interactive Commands

CHOOSE: Choose Single Option

Synopsis

Description

CHOOSE/’message’,string
list,[DEFLT,n,] [ALTACT,’message’,] response

This statement creates a menu of options which is displayed on
the dialog box. One of the options may be selected from the
menu. The option selected by the user causes a numerical value
to be assigned to a variable called the response variable. This
value may be used later in the program. The most common use
is with a JUMP statement. This technique allows you to
perform different operations in your program (by jumping to
different labels based on the user response) based upon the
option selected from the menu created by the CHOOSE
statement.

CAUTION We do not recommend using the asterisk
character (*) in menu prompts or menu options.

The CHOOSE statement works with the Back, Cancel and
Alternate Action options within Unigraphics. Back will cause
the value of 1 to be assigned to the response variable. Cancel
will cause 2 to be assigned. The value 3 is not used, and may not
be used. Alternate Action will cause 4 to be assigned to the
response variable.

You can create an alternate action option by using the minor
word ALTACT, followed by a message, as the parameter just
before the response variable. The ALTACT message displays as
the last option in the dialog area when the menu is displayed
during statement execution. You can make the message up to
forty characters long.

The response values 1—4 are reserved for the Back, Cancel, and
Alternate Action selections. Therefore, the first value available

for assignment from the menu options created by the CHOOSE
statement is 5. The first option on the created menu will return
5, the second option will return 6, the third, 7, and so on. There
is a maximum of fourteen options on a menu. The following is a

©EDS GRIP Fundamentals 7-11
All Rights Reserved Student Guide

7
;7
Y,

Advanced Interactive Commands

list of values assigned to the response variable for the CHOOSE

statement:
Response Assignment
Back 1
Cancel 2
Not used 3
Alternate Action 4
Option #1 5
S, Option #2 6
/ ’
/ ’ :
Y, .
Option #14 18

string list

A list of strings or string variables which constitute the
CHOOSE menu. The first parameter in the list is the message
which is covered in the beginning of this section and the
remaining parameters in the list will be used as options. Each
string can contain up to 40 characters. Using a hyphen “—” for
one of your options will create a nonselectable separator line.

NOTE Since the maximum number of options in a choose menu
is 15, the number of parameters in the list may not be
greater than 15.

DEFLT

Minor word that indicates that a menu default position is
desired.

n

The item number in the menu where the default caret will be
displayed.

ALTACT

Minor word that indicates that an alternate action message will
be create on the dialog area during statement execution. If
Alternate Action is selected, the response variable will equal 4.

‘message’
A string or string variable which represents the alternate action
message. The string can contain up to 40 characters.

GRIP Fundamentals ©EDS igraphics NX 2
7-12 Student Guide All Rights Reserved Unigraphics N

Advanced Interactive Commands

Example

response

A variable which will be assigned a numerical value based on
the user response.

This example demonstrates the use of the CHOOSE statement
to create a menu to prompt the user for a standard object.

BCKO010:
CHOOSE/ Select Standard Part’,$
"Bolt’,$
‘Nut’,$
"Washer’,DEFLT,1,RSP
JUMP/BCKO010:,CANCEL.:, , ,LBL010:,LBL020:,LBL030:,RSP

LBLO10: $$ option 1
ptype="BOLT’
JUMP/LBLO040:

LBL020: $$ option 2
ptype="NUT’
JUMP/LBLO040:

LBLO030: $$ option 3
ptype="WASHER’

LBLO040:

The previous example programs would display the following cue
line and dialog box:

Cue: Select Standard Part

Mut
Washer

QK Back | Cancel

Figure 7—3 The displayed choose statement.

©EDS GRIP Fundamentals 7-13
All Rights Reserved Student Guide

7
;7
Y,

Advanced Interactive Commands

Choose Options (Cont’d)

Example The program below is a simple example of use of the CHOOSE/
statement.

Example ENTITY/ In
NUMBER/ resp,x,y,z
BCKO010:
GPOS/INDICATE POSITION’,$
X,Y,Z,resp
S JUMP/BCKO010:,CANCEL.:,,,resp
/ 7 /
;////: In=LINE/x,y,z,x—5,y,z

BCKO020:
CHOOSE/’IS LINE OK?’, $ $$ Main title
'YES, CONTINUE’, $ $$ Option 1
'NO’, $ $$ Option 2
DEFLT1,resp
JUMP/BCKO020:,BCK020:,,,LBLO030:,,resp
DELETE/In
JUMP/BCKO10: $$ Re—indicate position
LBL030:
&COLOR(In)=&RED
CANCEL:
HALT

Frequently, in applications which create geometry, it is
necessary to allow the user to confirm that the geometry has
been created properly.

In the example above, the user must select either option 1, YES,
CONTINUE, or option number 2, NO, from the menu. If the
user selects BACK or CANCEL, the menu will simply be
redisplayed.

GRIP Fundamentals ©EDS igraphics NX 2
7-14 Student Guide Al Rights Reserved Unigraphics N

Advanced Interactive Commands

MCHOOS: Choose Multiple Options

Synopsis

Description

MCHOOS/primary string, menu options, response array,
[ALTACT,’message’,]response variable

This statement creates a dialog box with a maximum of 14
options (15 options with the Alternate Action option). You may
then interactively choose any or all of these options from the
menu. Each option you choose causes a numerical value to be
assigned to a variable, called the response array. You must Il
choose OK to enter the chosen options into the response array. 7

/ /
. _ /77
CAUTION We do not recommend using the asterisk

character (*) in menu prompts or menu options.

The MCHOOS statement works with the Back, Cancel and the
alternate action option. Back will cause the value of 1 to be
assigned to the response variable. Cancel will cause 2 to be
assigned. The value 3 indicates that zero or more menu options
were chosen along with OK. The alternate action option will
cause 4 to be assigned to the response variable.

You can enable an alternate action option by using the minor
word ALTACT, followed by a message, as the parameter just
before the response variable. The ALTACT message displays at
the bottom of the dialog box when the menu is displayed during
statement execution. You can make the message up to forty
characters long.

The response array entries will contain a 1 if the menu option
that matches the entry’s index is chosen, and a 0 otherwise. For
example, if options 1 and 3 are chosen from a five option menu,
the response array would contain 1,0,1,0,0.

©EDS GRIP Fundamentals 7-15
All Rights Reserved Student Guide

Advanced Interactive Commands

There is a maximum of fourteen options on a menu. Below is a
list of response values assigned to the response variable for the
MCHOOS statement:

Response Assignment

Back 1

Cancel 2

OK 3

Alternate Action 4%
77 NOTE ** OK or Alternate Action indicates that one or or more
7 7 menu selections were made.
/Y

primary string
A string or string variable consisting of the title of the menu,
which can be up to 40 characters.

menu options

A string list consisting of up to 14 menu options. Each string
can contain up to 40 characters, although the display may be
truncated by the window system.

NOTE The string list may only contain 15 items (the menu title
and 14 options).

response array

An array which handles the responses from the chosen options.
You may use a subrange; however, it must be large enough to
handle every menu option. The number of responses should
match the number of menu options. The system returns a value
of 1 if the corresponding option is chosen, a value of 0 if the
option is not chosen.

ALTACT

Minor word that indicates that an ALTERNATE ACTION
message will be created on the menu during statement
execution. If the ALTERNATE ACTION option is selected,
the response variable will equal 4.

’message’

A string or string variable which represents the ALTERNATE
ACTION message. The string can contain up to 40 characters.

GRIP Fundamentals ©EDS Unigraphics NX 2
7-16 Student Guide Al Rights Reserved grap

Advanced Interactive Commands

response variable

A variable which will be assigned a numerical value based on
the user response.

/S
/ 4
A

©EDS GRIP Fundamentals 7-17
All Rights Reserved Student Guide

Advanced Interactive Commands

Activity: Interactive Sheet Metal Part

Modify the program written for Activity 2. Follow these steps:

1 The program is to be modified to permit construction of any
rectangle given the width and height dimensions. Add an
interactive command to allow the user to enter the width and
height dimensions for this figure from the keyboard.

v, . :
/ /] Add an interactive command to allow the user to enter the
7/ values for the coordinates of the center of the rectangle

using the generic point menu.

] Add an interactive command to allow the user to choose
whether he wants the corners filleted or not.

1 If the user wants the corners filleted, add an interactive
command to allow the radii of these fillets to be entered
from the keyboard.

In order to allow clean construction of the figure, all interactive
commands must come before any geometry construction
commands.

When you finish the assignment, demonstrate the program to
your instructor.

Optional: Add logical statements to check the validity of the
data the user has entered. This will provide cleaner
construction of the part. For example, a negative or zero radius
fillet value should not be allowed. Also, the fillet radius should
be less than the dimensions of the figure.

GRIP Fundamentals ©EDS Unigraphics NX 2
7-18 Student Guide Al Rights Reserved grap

Solid Object Modeling Commands

Solid Object Modeling Commands

Lesson 8

Objectives

e Demonstrate an understanding of the commands for creating solids.

e Perform various operations on solids.

77
/ 4

/ ’
v

©EDS GRIP Fundamentals 8—1
All Rights Reserved Student Guide

Solid Object Modeling Commands

Solid Feature Creation

This section contains the GRIP statements necessary to create solid bodies. This
subset of commands include: block, cylinder, solid of revolution, and extruded
solid. Many of the solid creation statements in GRIP create parametric solid
bodies. Any creation parameters (e.g., dimensions of a block) are stored with
the solid body and may be edited. Usually the resulting body is associative with
any geometry used to construct the body.

Table 8§—1 Solid creation statements

Function Format

Solid Block creation SOLBLK/ORIGIN,xc,yc,zc,
SIZE,dx,dy,dz
[,IFERR label:]

Solid Cylinder creation SOLCYL/ORIGIN,xc,yc,zc,
HEIGHTh,DIAMTR,d
[,AXIS,i,j,k]
/777 [,IFERRlabel:]
/ /

7, Solid Extrusion SOLEXT/obj list, HEIGHT,h
LAXIS,i,j,K]
[,IFERRlabel:]

Revolved Solid SOLREV/ob; list,
ORIGIN,xc,yc,zc,
ATANGL,a [,AXIS,i,j,k]
[,IFERR label:]

NOTE When using solid feature statements on assemblies, you
need to make sure that the operation (or creation
statement) is performed on objects in the work part. If
the objects are not in the work part, the statement is not
executed and an error is reported.

GRIP Fundamentals ©EDS Unigraphics NX 2
8—2 Student Guide Al Rights Reserved grap

Solid Object Modeling Commands

Name

Synopsis

Description

Parameters

SOLBLK Solid Block

obj = SOLBLK/ORIGIN,xc,yc,z¢,SIZE,dx,dy,dz[,IFERR,label:]

Allows you to create a parametric solid block of any size. The
origin is on a corner of the block. The edges of the block are
aligned with the axes of the WCS.

ORIGIN

Minor word indicating that the following values specify the
block’s origin.

XC,YC,ZC
Work coordinates which specify the origin of the block.

SIZE
Minor word indicating that the following values specify the size
of the block.
7%
d ’d) d / /
N 7Y

Three length values for the block’s edges. These values can be
positive or negative, and determine the placement of the block
relative to its origin. A positive value causes the system to
create that particular edge in the positive direction of the
corresponding axis. A negative value causes the system to
create that edge in the negative direction of the corresponding
axis.

IFERR,label:

Specifies a label to which program execution jumps if an error
occurs. Possible errors include an invalid origin specification,
invalid parameter value, etc.

©EDS GRIP Fundamentals 8-3
All Rights Reserved Student Guide

Solid Object Modeling Commands

Example This example demonstrates the creation of two solid blocks,
both possessing the same origin point. One has positive edge
length values, the other negative edge lengths.

Declarations ENTITY/BLOCK1,BLOCK2

Geometry Definition BLOCK1 = SOLBLK/ORIGIN,1,3,2,SIZE,1,2,.5
BLOCK2 = SOLBLK/ORIGIN,1,3,2,SIZE,—-1,-2,-.5

BLOCK1

edge lengths
xc =1
c=2
BLOCK2 ZC =
edge lengths
xc = —1
yc = =2
zc=-.5

Z origin point for
k Y both blocks
X

Figure 8—1 Solid blocks created using positive vs. negative edge lengths
X
/

/ ’
v

GRIP Fundamentals ©EDS Unigraphics NX 2
8—4 Student Guide Al Rights Reserved grap

Solid Object Modeling Commands

Name

Synopsis

Description

Parameters

SOLCYL Solid Cylinder

obj = SOLCYL/ORIGIN,xc,yc,zc, HEIGHT,h, DIAMTR,d
[LAXIS,i,j,k] [,IFERR,label:]

Allows you to create a parametric solid cylinder by specifying its
origin, height, and diameter.

ORIGIN

Minor word indicating that the following coordinate values
specify the cylinder origin.

XC,YC,ZC
Work coordinate values which specify the origin of the cylinder.
The origin is located on one of the circular faces of the cylinder.

HEIGHT
Minor word indicating that the following value specifies the
cylinder height.
y g ://///
h 78
424

The distance between the two circular faces of the cylinder.
The height can be positive or negative and determines one of
two possible cylinders.

DIAMTR

Minor word indicating that the following value represents the
cylinder diameter.

d
The diameter of the cylinder.

AXIS

Optional minor word indicating that the following values specify
the cylinder axis.

i, j, k

Specifies a vector which defines the axis of the cylinder. The
system defines the axis parallel to this vector. If none is
specified, the system defines the cylinder axis parallel to the ZC
axis of the WCS.

©EDS GRIP Fundamentals 8—5
All Rights Reserved Student Guide

77
/ 4

/ ’
v

Solid Object Modeling Commands

IFERR,label:

Specifies a label to which program execution jumps if an error
occurs. Possible errors include an invalidly specified axis or
origin, parameter values not within the correct range, etc.

Example This example demonstrates the creation of two cylinders, both
with the same center. One cylinder (CYLI1) is created with a
positive height value, the other (CYL2) with a negative height
value. The axis for both is specified in the positive Z direction.

Declarations ENTITY/CYL1,CYL2

Geometry Definition CYL1=SOLCYL/ORIGIN,2,1,1, HEIGHT,1.5,DIAMTR,.5

CYL2=SOLCYL/ORIGIN,2,1,1, HEIGHT,-2,DIAMTR,1,AXIS,0,0,1

AXIS DIRECTION CYL1

34@\

center for
>< both cylinders

)

(

<

CYL2ﬂ~

9

Figure 8—2 Cylinder creation; positive vs. negative height values

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

Solid Object Modeling Commands

Name

Synopsis

Description

Parameters

NOTE

SOLEXT Extruded Solid
obj = SOLEXT/obj list, HEIGHT,h [, AXIS,i,j,k] [IFERR label:]

Allows you create a parametric solid body by sweeping a series
of curves a specified distance in a specified direction. The
specified curves may form an open or closed boundary. Be sure
to specify the curves in consecutive order (i.e., do not skip an
adjacent curve and then try to specify it later).

You may also create an extruded solid with holes in it. It makes
no difference whether you first define the outer boundary or the
hole.

obj list

A list of curves to be extruded along the specified axis. If the
specified curves are not closed, the system creates a solid sheet.
A closed loop of curves creates a solid. The curves do not have
to be coplanar. The maximum number of objects allowed is 514.

In the case of a closed loop of curves, if the curves are not
coplanar, the system attempts to attach a sheet body to
the loop. If no sheet can be attached, the extrusion fails.
Planar, spherical, conical, cylindrical, and toroidal bodies
can be attached.

HEIGHT

Minor word indicating that the next value specifies the height of
the extruded solid.

h

The distance that the specified curves sweep in the specified
direction. Values can be positive or negative. Positive values
sweep in the direction of the axis vector, negative values sweep
in the opposite direction of the axis vector.

AXIS

Optional minor word indicating that the next values specify the
axis for the extruded solid.

ij,k
Specifies a vector which defines the direction for the sweep.

©EDS GRIP Fundamentals 8—7
All Rights Reserved Student Guide

2
/

/ ’
v

2
/ /

/ ’
v

Solid Object Modeling Commands

IFERR,label:

Specifies a label to which program execution jumps if an error
occurs. Possible errors include an invalidly specified axis,
parameter values not within correct ranges, number of objects
exceeds maximum, invalid objects listed, the system was unable
to find a body while attaching a sheet to a face, the geometry
fails to pass checks while subdividing a face, etc.

Example This example demonstrates the creation of an extruded solid
from a series of curves. The program allows the curves to be
selected interactively, then sweeps them along the ZC axis at a
distance of 2.
Declarations ENTITY/OBJ(100),SOLID1
BCKO010:
IDENT/PICK CURVES’,OBJ,CNT,NUM,RSP
JUMP/BCKO010:,CANCEL:,,RSP
Geometry Definition SOLID1 = SOLEXT/OBJ(1..NUM),HEIGHT,2,AXIS,0,0,1
CANCEL:
HALT
] x
AXIS DIRECTION <_/ <
A T v\
<.\\< >\
Select Arc to —— g
Create Hole
Z
Y /\.
< X _;; N
N
Select Curves to ~> >
Create Outer
Boundary
Figure 8—3 Curves Swept Along ZC Axis to Form Extruded Solid
8$—8 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Solid Object Modeling Commands

Name

Synopsis

Description

Parameters

NOTE

SOLREV Solid of Revolution

obj = SOLREV/obj list,ORIGIN,xc,yc,zc,ATANGL,a[,AXIS,i,j,k]
[LIFERR,label:]

Allows you to create a solid of revolution by revolving a series of
curves around a specified axis. The resulting solid is parametric.
The specified curves may form an open or closed boundary.

Self intersecting solids are not allowed.

obj list

A series of curves to be revolved around the specified axis. If
the specified curves are not closed, the system creates a solid
sheet. A closed loop of curves creates a solid. The curves do

not have to be coplanar. The maximum number of objects
allowed is 514.

In the case of a closed loop of curves, if the curves are not
coplanar, the system attempts to attach a sheet body to
the loop. If no body can be attached, the extrusion fails. / /
Planar, spherical, conical, cylindrical, and toroidal bodies S
can be attached.

77
/ 4

ORIGIN

Minor word indicating that the following values specify the
origin for the axis of rotation.

XC,yC,ZC
Work coordinates specifying the origin of the solid.

ATANGL

Minor word indicating that the following value specifies the
angle of rotation.

a

The angle of rotation for the solid. The positive direction is
determined by the right hand rule for rotation. Align the thumb
of your right hand with the displayed vector. The direction in
which your fingers curl is the direction of positive rotation.

©EDS GRIP Fundamentals 8—9
All Rights Reserved Student Guide

2
78
S

Solid Object Modeling Commands

Example

Declarations

Geometry Definition

AXIS

Minor word indicating that the following values specify the axis
of rotation.

i, j, k
Specifies a vector which defines the axis of rotation. The system

defines the axis as parallel to the specified vector, passing
through the origin. If no axis is specified, the YC axis is used.

IFERR label:

Specifies a label to which program execution jumps if an error
occurs. Possible errors include: an invalidly specified axis or
origin, parameter values not within correct ranges, number of
objects exceeds maximum allowed, invalid object types listed,
the geometry fails to pass checks while subdividing a face, the
system is unable to find a body while attaching a sheet to a face,
etc.

This example demonstrates the creation of a solid of revolution
from a series of curves. The program allows the curves to be
selected interactively, then revolves them around the XC axis at
an angle of 180°.

ENTITY/OBJ(100),SOLID1
BCKO10:

IDENT/PICK CURVES’,OBJ,CNT,NUM,RSP
JUMP/BCKO010:, CANCEL:,,RSP

SOLID1=SOLREV/OBJ(1..NUM),0ORIGIN,2,2,0,$
ATANGL,180,AXIS,1,0,0
CANCEL:
HALT

8§-10

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

Solid Object Modeling Commands

selected curves

axis origin ROTATION
Figure 8—4 Solid of revolution creation

7,

772,
/

/ 8 /

224

©EDS GRIP Fundamentals 8—11

All Rights Reserved Student Guide

Solid Object Modeling Commands

Solid Operations

Existing solids can be altered using GRIP commands. Blends, splits, and
boolean operations can be performed on solids. Some of the operation
statements result in a non—parametric body. Association between the original
bodies and the construction curves (or sheets) may also be lost. The description
for each statement explains whether or not the resulting solid body is

parametric.
Table 8§—2 Solid operation statements
Function Format
Unite Solids UNITE/obj,WITH,obj list1
[,CNT,c][,IFERRlabel:]
Subtract Solids SUBTRA/obj, WITH,0b;j list
[,CNT,c][,IFERR,label:]
77 Intersect Solids INTERS/obj,WITH,0bj list1
7’8/ [,CNT,c][IFERR label:]
/ /
/
< Blend/Chamfer BLEND/obj,{RADIUS|
CHAMFR},num
[,obj list1][,VERT,0bj list2]
[IFERRlabel:]
$—12 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Solid Object Modeling Commands

Name

Synopsis

Description

Parameters

UNITE Unite
obj list = UNITE/obj,WITH,obj listl[,CNT,c] [, IFERR,label:]

Allows you to combine several solids into one by specifying a
target solid and a list of solids to be united to the target. The
resulting solid body is parametric. In order for the unite
operation to be useful, the specified solids must intersect.

In order to unite sheet bodies, they must meet at their edges
unless they have overlapping faces.

obj
The target solid.

WITH

Minor word specifying that the target solid is united with the

following object list.

Zs
obj Tist1 /8 -
List of solid objects to be united with the target solid. Maximum “~/~/.
allowed in list is 1000.

CNT

Optional minor word indicating that a count of solid objects is
to be returned.

c
Variable which returns the number of solid objects.

IFERR,label:

Specifies a label to which program execution jumps if an error
occurs. Possible errors include: maximum amount of objects
exceeded, illegal object specified, cannot unite opposed sheets,
can’t unite solid with sheet, etc.

©EDS GRIP Fundamentals 8—13
All Rights Reserved Student Guide

77
/

/ ’
v

Solid Object Modeling Commands

SUBTRA Subtract

obj list = SUBTRA/obj,WITH,o0bj list[,CNT,c] [, IFERR,label:]

Allows you to subtract solids from solids, sheet bodies from
sheet bodies, and sheet bodies from solids, as long as the sheet
body cuts the solid completely. When a single body results, the
body is parametric. When multiple bodies are generated, all the
bodies are non—parametric.

The target solid.

WITH

Minor word indicates that the following list of objects is to be
subtracted from the target solid.

obj list1
A list of tool solids you wish to subtract from the target solid.
Maximum number allowed in list is 1000.

CNT

Optional minor word indicating that a count of solid objects is
to be returned.

Variable which returns the number of solid objects.

IFERR, label:

Specifies a label to which program execution jumps if an error
occurs. Possible errors include: non-manifold body or boundary,
maximum number of tool objects exceeded, illegal object type in
list, etc.

Name
Synopsis
Description
Parameters obj
c
8-14

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

Solid Object Modeling Commands

Name

Synopsis

Description

Parameters

INTERS Intersect

obj list = INTERS/obj,WITH,0bj list1[,CNT,c] [,IFERR,label:]

Allows you to create a separate solid from those portions shared
by multiple solids. You can intersect solids with solids, sheet
bodies with sheet bodies, and a solid with a sheet body,
however, you cannot mix solids and sheets in the object list of
tool solids. When a single body results, the body is parametric.
When multiple bodies are generated, all the bodies are
non—parametric.

obj
The target solid.

WITH

Minor word indicates that the target solid is to be intersected

with the following list of solids. 27

obj list1 787
424

A list of tool solids you wish to add to the target solid. Objects
must be similar (all solids or all sheets). Maximum allowable
number is 1000.

CNT

Optional minor word indicates that a count of solid objects is to
be returned

c
Variable which returns the number of solid objects.

IFERR, label:

Specifies a label to which program execution jumps if an error
occurs. Possible errors include: mixture of sheet and solid tool
bodies, maximum number of tool solids exceeded, illegal object
type in list, etc.

©EDS GRIP Fundamentals 8—15
All Rights Reserved Student Guide

77
/ 4

/ ’
v

Solid Object Modeling Commands

BLEND Blend/Chamfer

BLEND)/obj,{RADIUS | CHAMFR},num{[,obj list1][,VERT,obj list2]
[IFERR,label:]

Allows you to modify a solid by either rounding (blend) or
beveling (chamfer) specified edges of the solid.

The BLEND statement works in much the same way as the
Blend option in the Modeling application except that you may
only do fixed radius blends. See the Modeling manual.

The solid to be modified.

RADIUS

Minor word indicating that a blend operation is to be performed
on the solid.

CHAMFR

Minor word indicating that a chamfer operation is to be
performed on the solid.

num

When used with the RADIUS minor word, num is the positive
radius of the blend.

When used with the CHAMFR minor word, num is the offset
distance between the intersection of the specified edges. When
one edge is curved, the offset is measured along the path of the
curved edge.

obj listl

First list of point objects which identify the edges of the solid to
blend/chamfer. The points identify the edges by distance. If
neither list of points is specified, then the system
blends/chamfers every edge in the solid.

VERT

Optional minor word specifies that the following list of points
identifies vertices on the solid.

Name

Synopsis

Description

Parameters obj
8-16

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

Solid Object Modeling Commands

obj list2

Second list of point objects which identify vertices on the solid.
The points identify the vertices by distance. The edges involved
in these vertices are blended/chamfered. If you do not specify

either list of points, then the system blends/chamfers every edge
in the solid.

IFERR,label:

Specifies a label to which program execution jumps if an error
occurs. Possible errors include: illegal object specified, radius
values must be positive, etc.

2
/

/ ’
v

©EDS GRIP Fundamentals 8—17
All Rights Reserved Student Guide

77
/ 4

/ ’
v

Solid Object Modeling Commands

Solid Object EDAs

The following table describes the EDAs that can be used specifically on Solid
Objects. The &SOLDAT command is generally used in conjunction with the
SOLENT/ command. The Edge Type command will indicate the wireframe
entity type of the underlying curve that represents an edge. Solid density can
be set for individual solids. The GPA &SDENS will set the default solid density

for new solids.

Function EDA Symbol Access Data Type
Type
Number of Faces or &SOLDAT (obj,{FACE | R/O Number
Edges/ EDGE}[,IFERR,label:]) >=0
Determine Edge Type | &EDGTYP(obj[,IFERR R/O Number
Jabel:]) [0,3,5,6,9]
Solid Density &SDENS(obj)* R/W | Number
>=0

* This command is also a GPA.

Solid Object GPAs
The following table describes the GPAs that can be used to set the preferences
for solid object display and creation. The density units can be read/set using
the numbers or GPA constants: 1 = &LBIN, 2 = &LBFT, 3 = &GCM,
4 = &KGM.
Function GPA Symbol Access Data Type
Type
Solid Density &SDENS* R/W Number
>=0
Density Units &SDUNIT R/W | Number
[1.4]
* This command is also an EDA.
8—18 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide

All Rights Reserved

Solid Object Modeling Commands

Activity: Extrude the L—Shape

The L—Shape geometry created in a previous exercise can be used with the
solid creation commands to generate a solid body. Use the geometry created in
that program to create an extruded solid with a hole.

1 Copy the L—shape program into a new file. Do not forget to use
your initials in the file name.

1 Extrude the lines in the +Z direction using a distance of
ext_ht=4.

1 Put a 1 inch horizontal hole through the center of the long
portion of the L. This will require a boolean subtraction
operation. You will need to create a cylinder at the
appropriate location and orient the cylinder in the XC
direction. The location of the hole should be calculated
from the reference x,y location.

77
/ 4

/ ’
v

holdia

Figure 8—5 Extruded L—Shape

1 Additional Challenge: Add prompts for the extrusion
distance and diameter. Error check the new data.

©EDS GRIP Fundamentals 8—19
All Rights Reserved Student Guide

Solid Object Modeling Commands

Activity: Solid L—Shape

Another method to create the L—Shape is to start with solids rather than
curves. In this activity, you will create a new program to generate the L—Shape
from solids.

1 Create a new GRIP source file using your initials in the file name.

1 Use the size data for the L—Shape curve creation program
and the extrusion data from the last exercise.

Variable Value Definition

X 0 X coordinate of lowest,
leftmost corner of figure.

y -3 Y coordinate of lowest,
leftmost corner of figure.

bw 1 Bottom width of figure
7 tw 2 Top width of figure
E/ﬁ //;‘ tht 6 Total height of figure
tpht 2 Top height of figure
ext_ht 4 Extrusion distance
holdia 1 Diameter of the hole

1 Put a 1 inch hole through the center of the long portion of
the L. This will require a boolean subtraction operation.
You will need to create a cylinder at the appropriate location
and orient the cylinder in the XC direction. The location of
the hole should be calculated from the reference x,y location.

TIP When you create the solid blocks for the L—shape, you
should consider that they will be united. You can only
unite objects that overlap or touch. When creating the
solids for uniting, it is usually a better practice to overlap.
If the solids are not touching within tolerance, a
Non—manifold Solid error message will be displayed in a
pop—up window.

GRIP Fundamentals ©EDS ioraphics NX
8-20 Student Guide All Rights Reserved Unigraphics NX 2

Database Cycling

Database Cycling

Lesson 9

Objectives

e Understand File Access.

Examine geometric objects in the data model.

Examine non—geometric objects in the data model.

Learn reading and writing to text files.

Understand printing data to the Listing Device.

2
9
Y

©EDS GRIP Fundamentals 9-1
All Rights Reserved Student Guide

Database Cycling

File Access

This section covers the GRIP statements used to control access to Unigraphics
and scratch files. Many of these statements are imbedded in Unigraphics, such
as creating, retrieving, and filing a part.

Table 9-1 File Access Commands

Function Format

Open a File FETCH/{PART;, filespec’ | TXT,file#, filespec’}
[,IFERRlabel:]

Create a File CREATE/{PART, filespec’

{,INCHES |MMETER} | TXTfile#
[, number list][, filespec’]}[, IFERR label:]

Save a File FILE/{PART | TXT| file#][, filespec]} [, LINNO]
[,JIFERRlabel:]

Close a File FTERM/{PART[options] | TXTfile#}
[,IFERRlabel:]

Delete a File FDEL/filespec’[, IFERRlabel:]

NOTE When accessing scratch files, be aware that GRIP NC
CLS files also use scratch file 1. If you attempt to write to
scratch file 1 when it already contains a CLS file, the CLS

7 > /// file will be lost.
79 7

/ /
/e

GRIP Fundamentals ©EDS igraphics NX 2
9-2 Student Guide All Rights Reserved Unigraphics N

Database Cycling

Name

Synopsis

Description

Parameters

FETCH Open a File
FETCH/{PART, filespec’ | TXT,file#,filespec’} [IFERR,label:]
This statement retrieves a copy of either a part file or a fext file.

PART
Minor word that indicates that the file to be retrieved is a part file.

TXT

Minor word which indicates that the file to be retrieved is a text file.
The file pointer is left on the last line of the file after it is retrieved.
This can be an important consideration if you should try to read that
file.

file#

The number of the scratch file into which the specified file is to be
retrieved. Ten scratch file areas are available, therefore, the specified
number must be between 1 and 10. The scratch file number is
required for text files only.

The file number cannot be used if the file is a part file.

filespec’

The filespec parameter is used to specify the name of the part or text
file. The filespec is required for part or text files only.

IFERR,label:
Specifies a label to which the program jumps if an error occurs. /24
79 7

/ /
/e

©EDS GRIP Fundamentals 9-3
All Rights Reserved Student Guide

77
' 9
4

Database Cycling

Name

Synopsis

Description

Parameters

CREATE Create a File

CREATE/{PART, filespec’{ INCHES | MMETER} | TXT,file#
[,’filespec’] }
[LIFERR,label:]

The following statement creates either a part file or a text file in one of
the 10 scratch file areas.

If you are creating a part file, a filespec is required.

If you are creating a fext file, the filespec is optional. A filespec is
required to file the text.

NOTE If you are creating a part file, the new part will contain all
customer default parameter values. Any GPAs defined before the
CREATE/PART statement will be reset to the current customer
default value.

PART
Minor word that indicates that a new part file is to be created.

filespec’
The filespec associated with part file creation.

INCHES,MMETER

The units of measure, inches and millimeters respectively, which will
be used for the part geometry.

TXT

Minor word indicating that a text file is to be created in one of the
scratch file areas which are basically used as temporary working areas.

file#

The number of the scratch file in which the new file is to be created.
Ten scratch file areas are available, therefore, the specified number
must be between 1 and 10.

filespec’

The filespec associated with text file creation. The filespec for a text
file is optional in the create statement because it may be specified
later in the FILE statement, if the file is to be saved.

IFERR,label:
Specifies a label to which the program jumps if an error occurs.

GRIP Fundamentals ©EDS Unigraphics NX 2
9-4 Student Guide Al Rights Reserved grap

Database Cycling

Name

Synopsis

Description

Parameters

FILE Save a File

FILE/{PART | XTI file#] [, filespec’] } [, LINNO]
[,IFERR label:]

This statement saves a copy a part file or a text file without terminating
the part or scratch file.

PART

Minor word that indicates that the file to be saved is the current work
part file.

TXT
Minor word that indicates that the file to be saved is the text file
which is currently in the specified scratch file.

NOTE The line pointer will reset to the top of the file after it has
been saved.

file#

The number of the scratch file which is to be saved. This parameter
may be used only if the file is a text file. Ten scratch file areas are
available, therefore, the specified number must be between 1 and 10.

filespec’

The optional filespec parameter. If a filespec is not specified the file
will be saved with the name with which it was created or fetched. If
you specify an existing file, then a “File already exists” message
occurs.

NOTE If a system error log or system log was fetched, the scratch
file has no name and, therefore, one must be specified in the FILE
statement.

LINNO

Minor word which indicates that the text file should be filed with the
editor’s line numbers

IFERR,label:
Specifies a label to which the program jumps if an error occurs.

©EDS GRIP Fundamentals 9-5
All Rights Reserved Student Guide

2
9
Y

77
' 9
4

Database Cycling

FTERM Close a File

FTERM/{PART [options] | TXT,file#} [IFERR,label:]

This statement closes an active part(s) or scratch file without saving.
Options for the PART minor word allow you to either: close all parts
or specify a part file name, close all the subassemblies of the part, or
close modified part(s) without an error. If you do not use any options
with the PART minor word, then the command closes the default work
part.

“[options]” is equivalent to: [,all| [,string] [,asmbly] [,always]] . If you
specify the all option, then the use of string, asmbly, or always is
invalid. If you use any one or all of string, asmbly, or always then the
use of all is invalid. The following are some typical syntax examples of
using FTERM.

FTERM/PART[,all] [,IFERR label:]
FTERM/PART|,string] [asmbly] [,always] [IFERR,label:]
FTERM/TXTfile# [, IFERR,label:]

PART
Minor word that indicates that the files to be closed are part files.

[options]
Specifies either all or any of the options string, asmbly, or always.

Closes all parts in a session without saving. When you use the all
option, the string, asmbly, and always options are not available for

string

Specifies the name of the part to close. The part name can be a file
specification (path and file name). The string can be a variable or a
string literal.

asmbly
Closes the current part/specified part and all of its subassemblies.

always
Closes the part(s) without error even if the part(s) were modified.

Name
Synopsis
Description
Parameters
all
use.
9-6

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved graphics N.

Database Cycling

TXT

Minor word that indicates that the file to be closed is the text file
which is currently in the specified scratch file.

file#

The number of the scratch file which is to be closed. Ten scratch file
areas are available, therefore, the specified number must be between
1 and 10.

IFERR,label:
Specifies a label to which the program jumps if an error occurs.

2
9
Y

©EDS GRIP Fundamentals 97
All Rights Reserved Student Guide

Database Cycling

Name FDEL Delete a File

Synopsis FDEL/filespec’[IFERR,label:]

Description Deletes the specified file if the user has proper access to the file.
Parameters “filespec’

The filespec is the pathname plus the filename you want. If the file
you need is in your current directory, the filename should be sufficient
to find it. The FDEL statement requires that the file extension (e.g.,
.PRT, .GRS) be specified.

IFERR,label:
Specifies a label to which the program jumps if an error occurs.

77
' 9
4

GRIP Fundamentals ©EDS ioraphic
)-8 Student Guide All Rights Reserved Unigraphics NX 2

Database Cycling

Object Cycling

There are four GRIP commands to examine objects in the data model or to
perform some function on each object. Two commands cover geometric objects;
the remaining two commands are used for non-geometric objects.

Table 9-2 Data Cycling Statements

Function Format

Initialize Data Model =~ INEXTE[/ALL]
for object cycling

Obtain the next NEXTE/IFEND,label:
selectable object

Initialize Data Model =~ INEXTN/{type no.|type GPA}

for non geometric cycling [,subtype][,IFERR,label:]
Obtain the next NEXTN/IFEND,labell:
non—geometric object [,JIFERR label2:]

You must use the INEXTE or INEXTN commands to start the cycle at the
beginning of the data model. To access selectable geometric objects, use the
NEXTE command in a loop. To access non—geometric objects, use the
NEXTN command in a loop. You should not delete objects in a loop. The
NEXTE and NEXTN commands use data from the ’current’ object to find the
next object. If you delete the object, the subsequent NEXTE or NEXTN
command will fail.

2
9
Y

©EDS GRIP Fundamentals 9-9
All Rights Reserved Student Guide

Database Cycling

Example 1-2.

You may only access objects on visible and selectable layers. For
example, think of the objects as being in a list as shown in the
figure below. The list shows a part with 9 objects:

4 on Visible and Selectable layers (L1, L2, C1, P1)
3 on Invisible and Non-selectable layers (L3, C2, P2)
2 on Visible and Non-selectable layers (E(1..2))

Visible Invisible Visible
Selectable Non—selectable Non-—selectable
L1
L2
L3
Cl1
C2
E(1)
E(2)
P1
P2
(LAST OBJECT)

Figure 9—1 Visible Selectable Layers

77
' 9
4

GRIP Fundamentals ©EDS ioraphi
9-10 Student Guide All Rights Reserved Unigraphics NX 2

Database Cycling

INEXTE: Initialize Data Model Cycling

Synopsis

Description

Parameters

INEXTE[/ALL]

This statement initializes or resets the data model cycle
mechanism so that the next use of the NEXTE statement will
access the first selectable, unblanked object in the data model
which is inside the clipping bounds.

/ALL

Minor word that indicates that all of the selectable objects in
the data base including objects blanked and outside the clipping
bounds will be accessed. If /ALL is not used, only the currently
displayed objects will be accessed.

2
9
Y

©EDS GRIP Fundamentals 9-11
All Rights Reserved Student Guide

77
' 9
4

Database Cycling

NEXTE: Cycle to Next Object

Synopsis

Description

Parameters

Example

obj = NEXTE/IFEND,label:

The following is an entity valued function which may be used to
address the next selectable object in the data model.

IFEND

Minor word that indicates that the next parameter will be a
statement label, which the program will branch to after the last
selectable object in the data model has been accessed.

label:

The statement label to which the program will branch after the
last selectable object in the data model has been accessed.

This code changes the color of all lines on selectable layers to
red. The ALL minor word in the INEXTE statement causes all
objects in the data model to be examined, even those that are
blanked or outside the clipping bounds (not displayed). The
MASK statement causes only lines in the database to be
selectable.

ENTITY/ cur_obj

INEXTE/ ALL
MASK/ 3

WHLO10:
cur_obj = NEXTE/ IFEND, WHL020:
&COLOR (cur_obj) = &RED
JUMP/ WHLOT0:

WHL020:

HALT

GRIP Fundamentals ©EDS Unigraphics NX 2
9-12 Student Guide Al Rights Reserved grap

Database Cycling

INEXTN: Initialize Non—geometric Object Cycling

Synopsis INEXTN/{type no.|type GPA}[,subtype] [, IFERR,label:]

Description This statement initializes or resets the data model cycle function
so that the next use of the NEXTN statement will access the first
non-geometric object. INEXTN and NEXTN are used to cycle
only non-geometric objects.

Parameters type no.

A numerical value or variable which specifies the type of object that
can be accessed using the NEXTN statement. Allowable values are:

Value Object Type

12 Category
60 View

61 Layout
62 Drawing

64 Reference set/library entry

100 | Machining operation

107 | Machining parameter set
109 | Machining tool

type GPA

A GPA which specifies the type of object that can be accessed
using the NEXTN statement. Allowable GPAs are:

7
GPA Object Type ;/////;
&VIEWS View ’
&LAYOUT | Layout
&DRWG Drawing
&REFLIB Reference set/library entry
&OPER Machining operation
&PARSET | Machining parameter set
&TOOLS Machining tool

&CATGRY | Category

©EDS GRIP Fundamentals 9-13
All Rights Reserved Student Guide

Database Cycling

subtype

A numerical value or variable which specifies the subtype of

object that can be accessed using the NEXTN statement. If the
subtype is not specified, then all subtypes of the given type will
be returned. Allowable subtypes are shown in the table below.

Type /Desc Subtype | Subtype Description
64=Reference 0 Reference set
set/library entry 1 Tool from library entry
2 Parameter set from library entry
107=Machining 11 Mill post commands
parameter set 13 Lathe post commands
110 Pocket
210 Fixed axis surface contouring
211 Variable axis surface contouring
220 Interactive generated sequential

surface machining

222 GRIP generated sequential surface
machining

230 Parameter line machining
240 Zig-zag surface

250 Rough-to-depth

260 Cavity milling

310 Lathe rough

320 Lathe finish

330 Lathe groove

340 Lathe thread

350 Lathe drill

450 Point-to-point

460 Sequential curve mill

461 Sequential curve lathe
7//// IFERR,label:
y 9 / Specifies a label to which program execution jumps if an error
v occurs.

GRIP Fundamentals ©EDS ioraphic
9-14 Student Guide All Rights Reserved Unigraphics NX 2

Database Cycling

NEXTN: Cycle to Next Non—geometric Object

Synopsis

Description

Parameters

str = NEXTN/IFEND,labell:[,IFERR,label2:]

This statement will return the name of the next non—geometric
object in the data base. This statement is used to cycle only
non—geometric objects and must be used with INEXTN. One
name at a time is returned for each NEXTN statement issued.

IFEND,labell:

Specifies a label to which program execution will jump after the
last non—geometric object in the part file has been accessed.

IFERR,label2:

Specifies a label to which program execution will jump if an
€ITror Occurs.

2
9
Y

©EDS GRIP Fundamentals 9-15
All Rights Reserved Student Guide

77
' 9
4

Database Cycling

Non-Geometric Database Cycling Example

Example

This code changes sends a list of drawings in the current part
file to the listing window.

A while loop is simulated using labels and a jump statement.
This loop will execute as many times as needed to find all of the
lines in the database.

STRING/ dwg_name(30)

PRINTY/ ’List of Drawings’

PRINT - —— — — — — — — ’
PRINT/”

INEXTN/ &DRWG, IFERR, ERR100:

WHLO010:
dwg_name = NEXTN/ IFEND, WHL020:,$
IFERR, ERR110:
PRINT/ dwg_name
JUMP/ WHLO010:
WHL020:
JUMP/ CANCEL:

ERR100:
MESSG/ 'No Drawings Found
JUMP/ CANCEL.:
ERR110:
MESSG/ ’Error Reading Drawing Name’

CANCEL:
HALT

9-16

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

Database Cycling

Reading and Writing to Text Files

The commands available to open, read from, and write to text files are
described in the following pages.

Table 9-3 File Access Commands

Function Format

File Pointer Control RESET/file#

Read Text READ/file#[,LINNO,line#][,USING,’ image
string’|[,IFEND,label:][,IFERRlabel:,],variable
list

Write Text WRITE/file#[LINNO,line#][,USING, image

string,],data list

Print to a file or PRINT/[USING;, image string’,]data

listing window list
/,
7/,
9
v
©EDS GRIP Fundamentals 9-17

All Rights Reserved Student Guide

Database Cycling

Name RESET File Pointer Control

Synopsis RESET/file#

Description This statement sets the line pointer to zero in the specified scratch
file.

Parameters file#

The number of the scratch file in which the line pointer is to be
positioned. Ten scratch file areas are available, therefore, the
specified number must be between 1 and 10.

77
' 9
4

GRIP Fundamentals ©EDS ; .
9-18 Student Guide All Rights Reserved Unigraphics NX 2

Database Cycling

READ: Read Text from a File

Name

Synopsis

Description

Parameters

NOTE

READ Read Text

READ/file# [,LINNO,line#] [,USING,’image string’]
[,IFEND,label:] [,IFERRlabel:,],variable list

The following statement reads a line of data from the specified
scratch file. An unformatted READ of a string will discard leading
blanks. A formatted READ of a string will retain leading blanks.
Unless the program changes line numbers using the RESEQ
statement, all line numbers are in increments of 10.

file#

The number of the scratch file from which the data is to be read. Ten
scratch file areas are available, therefore, the specified number must
be between 1 and 10.

LINNO
Minor word which indicates that a specified line is to be read.

NOTE If LINNO is not specified the line following the line
pointer position in the data file will be read and the line pointer will
be set to the last line read.

line#
The number of the line to be read.

USING

Minor word which indicates that the data is to be input to a specified

format. 76///
/ /

/ /
/,
The USING option should be used only when the data in the &

file is in a free format.

’image string’
The format image string is covered in the GRIP Programming
Reference Manual.

IFEND,label:

Specifies a label to which the program jumps when the pointer
reaches the end of the file.

©EDS GRIP Fundamentals 9-19
All Rights Reserved Student Guide

77
' 9
4

Database Cycling

NOTE

IFERR,label:
Specifies a label to which the program jumps if an error occurs.

variable list

The variable list may consist of any combination of string variables or
numerical variables.

If the number of items in the data record exceed the number of
variables in the variable list, the remaining items will be
ignored. If the number of variables in the variable list exceed
the number of items in the data record, subsequent lines of
data will read until the variable list has been satisfied.

The variable list may contain a maximum of 42 variables and/or array
positions. However, the line length is limited to 132 characters. If this
length is exceeded, the remaining characters are ignored.

9-20

GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Database Cycling

WRITE: Write Text to a File

Name

Synopsis

Description

Parameters

NOTE

WRITE Write Text

WRITE/file# [,LINNO,line#] [,USING,’ image string’],data list

This statement writes a line of data to the specified scratch file.

file#

The number of the scratch file to which the data is to be written. Ten
scratch file areas are available, therefore, the specified number must
be between 1 and 10.

LINNO

Minor word which indicates that the line created will have the
specified line number. If the specified line exists, the data will be
replaced.

If LINNO is not specified in the first WRITE statement, the
beginning line number will be 10. If LINNO is not specified on
subsequent WRITE statements, the new line number will be
equal to the last line number plus 10.

line#
The number of the line to be created.

USING

Minor word which indicates that the data is to be output to a specified
format.

’image string’

The format image string which is covered in the GRIP Programming
Reference Manual.

data list

The data list may consist of any combination of string variables,
numerical variables, string literals or numerical values.

©EDS GRIP Fundamentals 9-21
All Rights Reserved Student Guide

2
9
Y

Database Cycling

PRINT: Print Data on Listing Device

Synopsis PRINT/[USING,’image string’,]data list

Description This statement lists the specified data on the current listing
device.

Parameters USING

Minor word which indicates that the data is to be output to a
specified format.

’image string’
The format image string is covered in the GRIP Programming
Reference Manual.

data list

The data list may consist of any combination of string variables,
numerical variables, string literals or numerical values.

Description The PRINT statement is a convenient way of displaying data to
the user. Possible uses include help messages, tables of
information, and debugging.

77
' 9
4

GRIP Fundamentals ©EDS igraphics NX 2
9-22 Student Guide All Rights Reserved Unigraphics N

Database Cycling

Activity: Reading a Text File

Modify the L—Shape program to read in the dimensions from a text file
based on the selection of a configuration from a menu.

1 Replace the PARAMY/ statement with the following
CHOOSE/ statement

CHOOSE/ * Sel ect Configuration' ,$
"LSHAPE 1',$
"LSHAPE 2’ , $
"LSHAPE 3’ , $
" LSHAPE 4, $
' LSHAPE 5 , resp

1 Fetch the text file grp_lshape.dat and read data from
each line until the correct “dash” number is found.

READ/2, IFEND, CANCEL:,dsh,bw,tw,tht,tpht

The text file contains the following lines of data:

©EDS GRIP Fundamentals 9-23
All Rights Reserved Student Guide

2
9
Y

Database Cycling

(This Page Intentionally Left Blank)

77
' 9
4

GRIP Fundamentals ©EDS igraphics NX 2
9-24 Student Guide Al Rights Reserved Unigraphics N

Object Access

Object Access
Lesson 10

Objectives

Understand Layer Control.

Understand Layer Categories.

Control object selection in a GRIP program.
Obtain object information.

Use Global Parameter Access Symbols to control the Unigraphics
environment.

7
210’
7

©EDS GRIP Fundamentals 10—-1
All Rights Reserved Student Guide

7
710
7

Object Access

Categories and Layer Control

The GRIP statements used to control layers perform the same functions which
are defined in Unigraphics using Layer Setting dialogs. The LAYER command
controls which layers are selectable in a Unigraphics part.

Below is the GRIP layer control statement which will be described in this
manual, as well as the commands to access objects and remove, hide, or delete

objects in a partfile.

Table 10—1 Layer Control and Modification Command

Function Format

Layer LAYER/{[WORKn],

Control [ACTIVE,{REST |layer list [,CAT,cat’]}]
[REE{REST |layer list[,CAT, cat’]}],
[INACT,{REST |layer list[,CAT,’cat’]}]}

Create CAT/name’{,layer list|,CAT, cat’}

Category [,DESCR, description’][,IFERR,label:]

Edit Category CATE/name’{,ADD |, REMOVE}

Delete Category

Query Category

[layer list][,CAT, cat list’]
[,DESCR, description’][,IFERRlabel:]

CATD/name’[,IFERRlabel:]

CATV/name’[, LAYER layers,CNT,count]
[,DESCR, description’][,IFERRlabel:]

10-2

GRIP Fundamentals
Student Guide

©EDS J 1 X2
All Rights Reserved Unigraphics N.

Object Access

LAYER: Layer Control

Synopsis

Description

Parameters

LAYER/[WORK,n],
[ACTIVE,{REST |layer list[,CAT, cat’] }],
[REFE,{REST | layer list[,CAT,’cat’] }],
[INACT,{REST |layer list[,CAT, cat’] }]

Establishes the operating status of the 256 available layers.

You can use the EDA &LAYER to later change the layer of a
specified object.

WORK

Minor word which indicates that the following parameter will
establish the work layer. The work layer is the only layer on
which objects may be created.

n
The number of the work layer.

ACTIVE

Minor word which indicates that the following minor word or
list will establish the active layers. Objects on active layers are
visible and selectable.

REF

Minor word which indicates that the following minor word or
list will establish the reference layers. Objects on reference
layers are visible, but not selectable.

INACT

Minor word which indicates that the following minor word or
list will establish the inactive layers. Objects on inactive layers
are neither visible nor selectable.

REST

Minor word which follows each of the minor words ACTIVE,
REF and INACT and may appear only once in a layer statement.

REST indicates that the status of all layers not previously ,/1/ /’,
determined in the statement will assume the status of the y 0’
preceding minor word. /Y

©EDS GRIP Fundamentals 10-=3
All Rights Reserved Student Guide

7
710
7

Object Access

layer list

Each of the minor words ACTIVE, REF, and INACT may be
followed by an optional list of layer numbers separated by
commas which will assume the status of the associated minor
word. The layer list may contain either a list of layer values
separated by commas and/or a subrange of layers (1..256).

CAT

Minor word which indicates that an existing category name will
be specified.

’cat’

A string or string variable which represents a previously defined
layer category name which, if used, must be last in the layer list.

’cat’

A string or string variable which represents a previously defined
layer category name. This string cannot contain any blanks.

10—4 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Object Access

CAT: Create Layer Category

Synopsis

Description

Parameters

NOTE

CAT/name’[,layer list] [,CAT, cat’] [, DESCR, description’]
[LIFERR,label:]

Allows specified layers to be grouped together and given a name
which may subsequently be used in the layer statement. You
can use categories to manage ranges or sets of layers at one
time. Category members may overlap, and a layer may be a
member of an unlimited number of categories.

For example, you may be working on an assembly of a product,
detailing one of the parts. You could create a category and give
it the name of the part. The category would contain the layers
which hold the part dimensions, notes and title block, geometry,
etc. You could then automatically activate the entire part by
activating that category.

You can also create a description for the category by using the
minor word DESCR followed by the description string. The
description string can be a maximum of 80 characters long.

If you specify an existing category name, this command
completely redefines the category.

The layer list and minor word CAT are both optional
parameters. However, if neither is specified, the system
doesn’t generate an error message and it doesn’t create
any categories. You should specify either one or both of
these optional parameters to create a category.

’name’

The category name which may be up to 30 characters long and
must start with an alpha character.

layer list

A list of layer numbers separated by commas and/or a subrange
of layers.

CAT ;//////

Minor word indicating that an existing category name will be y 10

specified. /Y
©EDS GRIP Fundamentals 10_ 5

All Rights Reserved Student Guide

7
710
7

Object Access

Example

Create Category

’cat’

A string or string variable which represents a previously defined
layer category name. This string cannot contain any blanks.

DESCR

Minor word indicating that a description will be specified for
the category.

’description’
A description string of up to 80 characters.

IFERR label:

Specifies a label to which program execution jumps if an error
occurs.

This example demonstrates the creation of a category
containing several layers and a description.

CAT/DIMS’, 10..20, DESCR,;Dimensions, Symbols, and Notes’

The layers containing the dimensions, drafting symbols and
notes (layers 10 through 20) are now grouped into the category
called DIMS. A description of the category’s contents
accompanies DIMS. At this point, if the complete assembly was
active (layers 1-256), you could look at just the dimensions by
making all layers (except the work layer) INACTIVE, then
ACTIVATING the category DIMS.

LAYER/WORK,10,ACTIVE,CAT,DIMS’, INACLREST

GRIP Fundamentals ©EDS Unigraphics NX 2
10-6 Student Guide Al Rights Reserved grap

Object Access

CATE: Edit Category

Synopsis

Description

Parameters

CATE/name’{,ADD | REMOVE}
[,layer list] [,CAT, cat list’] [DESCR,’description’]
[,IFERR,label:]

Allows you to edit existing categories. To edit a category, you
must specify one of the minor words, ADD or REMOVE. Both
of these minor words apply to the layer list, category list, and
description field. When the minor word DESCR is present, the
description string is required when adding, but is optional and is
ignored when removing.

‘name’
The name of the existing category to edit.

ADD

Minor word which enables you to add layers or to add or change
the description field.

REMOVE

Minor word which enables you to remove layers or the
description field.

layer list

A list of layer numbers separated by commas and/or a subrange
of layers. To specify a subrange of layers, use two periods to
specify the range. For example, use 11..20 to specify layers
11-20.

CAT
Minor word specifies the use of an existing category name.

’cat list’

A string list which represents previously defined layer category
names. The strings cannot contain any blanks.

DESCR
Minor word indicates that there is a description for the

category.
’description’
A description string of up to 80 characters.

IFERR,label: ;//////
Specifies a label to which program execution jumps if an error /10

/
occurs. 70

©EDS GRIP Fundamentals 10=7
All Rights Reserved Student Guide

Object Access

CATD: Delete Category

Name CATD Delete Category
Synopsis CATD/name’[,IFERR,label:]
Description Allows you to delete a category.
Parameters ‘name’

The name of the existing category to delete.

IFERR,label:
Specifies a label to which program execution jumps if an error
occurs.
;/////
ALY
7
10-8 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Object Access

CATV: Query Category

Synopsis

Description

Parameters

CATV/name’[, LAYER,layers,CNT,count] [, DESCR,’description’]
[,IFERR,label:]

Allows you to query the layers and the description in a category.

‘name’
The name of the existing category to query.

LAYER
Minor word which indicates that you want to verify the layers.

layers

The layers in the category are returned in this numeric array.
This array should be large enough to hold the layers in the
category.

CNT

Minor word which indicates the following number variable is the
return area for the number of layers in the category.

count

Numerical return value which holds the actual count of layers in
the category.

DESCR
Minor word indicates that you want to verify the description.

’description’

A return area for the description string which can consist of up
to 80 characters.

IFERR label:

Specifies a label to which program execution jumps if an error
occurs.

7
210’
7

©EDS GRIP Fundamentals 10-9
All Rights Reserved Student Guide

Object Access

Object Control

In Unigraphics, the selection of objects can be controlled by the user using the
Unigraphics Class Selection Menu, blanking status, layer status, and group
status. In a GRIP program, various methods of specifying and selecting objects
are available.

e Many GRIP commands accept an entity list as an argument to the
command. An entity list is a list of object variable names. These
variables can reference simple objects, object arrays, and groups of
objects. NO TAG shows a variety of entity lists used with the
DELETE statement.

Example

ENTI TY/ refpt, pt(100), gp, | n(60)

DELETE/ refpt, gp
DELETE/ pt(2), pt(6), pt(8)
DELETE/ pt(30..60), In

e The MASK statement controls the selection of objects according to
their type. For instance, only circles can be selectable as in NO TAG

Example
MASK/ 5
;/////
10
ALY,
10—=10 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Object Access

The GRIP Statements used to temporarily hide objects from the display and
delete objects from the database are included in this section. The statement
used to obtain information about objects in the database and to filter on the
types of objects to be selected are also covered.

Table 10—2 Layer Control and Modification Command

Function Format

Mask objects(s) MASK/{ALL|NONE |[OMIT,],obj type list}

TYPF of object num = TYPF(obj)

Obtain object OBTAIN/obj,variable list
information

Draw Screen DRAW/{ON|OFF|ALL |obj list}
Delete object(s) DELETE/{obj list| ALL}

7
210’
7

©EDS GRIP Fundamentals 10—-11
All Rights Reserved Student Guide

7
710
7

Object Access

MASK: Class Selection

Synopsis

Description

Parameters

MASK/{ALL|NONE | [OMIT,],obj type list}

Changes the selectable status associated with a particular object
type to valid or invalid.

The MASK statement can be used to make only certain objects
selectable by their object type. For example, you may want to
delete all objects except lines. No matter what the lines are
named (even if they are not named) they can be made
non—selectable by their object type.

ENTITY/PT1,CR(2),L(3),LN1,L1
PT1=POINT/0,0
CR(1)=CIRCLE/1,1,.5
CR(2)=CIRCLE/2,2,1
LN1=LINE/0,0,1,1
L(1)=LINE/2,2,33

LINE/3,4,1,6

MASK/OMIT,3
DELETE/ALL

ALL

Minor word that indicates that all of the object types in the data
model are valid and selectable.

NONE

Minor word that indicates that all of the object types in the data
model are invalid and not selectable.

OMIT

Minor word that indicates that all of the following object types
in the data model are invalid and not selectable. If the minor
word OMIT is not used, only those object types included in the
list will be valid and selectable.

obj type list
A list of object types. See the following table for allowed object
type values.

10-12 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Object Access

Object Type Value
Point 2
Line 3
Circle 5
Conics 6
B-curve 9
Pattern 10
Boundary 14
Groups 15
Cylinder Face 16
Cone Face 17
Sphere Face 18
Revolved Face 19
Extruded Face 20
Planar Face 22
Blend Face 23
Drafting Object 25
Dimension 26
Margin 29
B—Surface face 43
Coordinate System 45
Plane 46
Component 63
Offset surface face 65
Foreign surface face 66
Solid/sheet body 70
Face 71
Edge 72
Section Edge 199
Silhouette 201
Section Line 202

©EDS
All Rights Reserved

GRIP Fundamentals
Student Guide

10-13

7
210’
7

Object Access

NOTE Types 16—20, 22, 43, 65, and 66 are special cases of a face
(type 71). Cylindrical, conical, etc. solid and sheet bodies
correspond to type 70. For example, type 16 corresponds
to the cylindrical face of a solid cylinder or the face of a
cylindrical sheet body. It is not the solid or sheet
cylinder: That object is a type 70.

7
; 10
7

GRIP Fundamentals ©EDS . .
10-14 Student Guide All Rights Reserved Unigraphics NX 2

Object Access

TYPF: Object Type

Synopsis

Description

Parameters

Example

Declarations

Geometry Definition

Object type

num = TYPF(obj)

Returns an integer which represents the type of object in the
argument.

obj
An existing object.

For a complete list of all Unigraphics object types, see
Appendix C.

This example demonstrates the use of the TYPF statement to
extract the object type number from several objects.

ENTITY/PT1,LN1,DIM1
STRING/STR1(20)

PT1=POINT/0,0

LN1=LINE/0,0,1,1
DIM1=LDIM/HORZ,.5,2,PT1, XLARGE,LN1
STR1="THE OBJECT NUMBER=’

NUMPT1=TYPF(PT1)
NUMLNI1=TYPF(LNT1)
NUMDIM=TYPF(DIM1)

The numerical variables would be assigned values as follows:

Variable Numerical Value Extracted
NUMPT1 2
NUMLN1 3
NUMDIM 26

You might want to continue your program to send the value to
your message monitor as follows:

MESSG/STR1+ISTR(NUMPT1)
MESSG/STR1+ISTR(NUMLN1)
MESSG/STR1+ISTR(DIMNUM)

;/////
You could also write a GRIP program to cycle through your data / 10
base and find all dimensions (26) and delete them. 7./

©EDS GRIP Fundamentals 10—-15
All Rights Reserved Student Guide

7
710
7

Object Access

The type EDAs are listed below:

Function EDA Symbol Access Data Type
Type

Object Type &TYPE(obj) RO Number

Object Subtype &SUBTYP(obj) RO |Number

Some objects have a type and a subtype. The &TYPE and
&SUBTYP EDAs can be used in conjunction with each other as

follows:

ENTI TY/ obj
NUMBER/ obj t yp, obj sub

obj typ
obj sub

&TYPE(obj)
&SUBTYP(obj)

| FTHEN objtyp == 25
| FTHEN' obj sub == 1

MESSGE ' bj ect

ELSEI F/ objsub == 2

MESSGE ' bj ect

ENDI F

ENDI F
HALT

10-16

GRIP Fundamentals
Student Guide

©EDS
All Rights Reserved

is a Note’

is a Label’

Unigraphics NX 2

Object Access

OBTAIN: Object Information

Synopsis

Description

Parameters

OBTAIN/obj,variable list

Causes the numerical data stored with an object to be assigned
to numerical variables.

obj
The existing object from which the variables in the variable list
are set.

variable list

The variables which are assigned the parameter values obtained
from the object. The number of variables required and/or their
position in the list is dependent on the object type. Although
the number of variables in the list and the number of
parameters obtained do not have to be the same, the sequence
of the variables in the list is extremely important. Any
unmatched variables or parameters are ignored.

The following table consists of the various object types, the
parameters which may be obtained, and their relative positions.

See the GRIP Programming Manual for information concerning
items highlighted by single, double, and triple asterisks (*).

Object Object
Type Type # | Parameters and Definitions

Point 2 OBTAIN/0bj,X,Y,Z

obj -- point object name
X -- coordinate
Y -- coordinate
7Z. -- coordinate

Line 3 OBTAIN/0bj,X1,Y1,721,X2,Y2,72

obj -- line object name
X1 -- start point X coordinate
Y1 --start point Y coordinate

Z1 --start point Z coordinate s

X2 --end point X coordinate 210/

Y2 --end point Y coordinate 7 /

Z2 -- end point Z coordinate 2
©EDS GRIP Fundamentals 10_ 17

All Rights Reserved Student Guide

Object Access

Object Object
Type Type # | Parameters and Definitions
Circle 5 OBTAIN/ob},X,Y,Z,R,A1,A2
obj -- circle object name
X -- center point coordinate
Y -- center point coordinate
Z -- center point coordinate
R --radius
Al --start angle of arc
A2 -- end angle of arc
Ellipse 6 OBTAIN/0bj,X,Y,Z,51,S2,ROT,A1,A2
obj -- ellipse object name
X -- center point coordinate
Y -- center point coordinate
Z -- center point coordinate
S1 -- semi-major axis length
S2 -- semi-minor axis length
ROT -- rotation angle
Al --start angle of conic
A2 -- end angle of conic
Hyperbola 6 OBTAIN/obj,X,Y,Z,51,S2,ROT,YMIN,
YMAX
obj -- hyperbola object name
X -- center point coordinate
Y -- center point coordinate
Z -- center point coordinate
S1 -- semi-transverse axis length
S2 -- semi-conjugate axis length
ROT -- rotation angle
YMIN-- minimum Y distance
YMAX-- maximum Y distance
Parabola 6 OBTAIN/obj,X,Y,Z,FEROT
obj -- parabola object name
X --vertex coordinate
Y --vertex coordinate
Z --vertex coordinate
F --focal length
ROT -- rotation angle

7
710
7

GRIP Fundamentals
10-18 Student Guide

©EDS Unigraphics NX 2

All Rights Reserved

Object Access

Object Display Control

When you use a statement to create an object such as:

LN = LINE1,1,2.5,3.7

the object is added both to the data model, and to a list of objects (called the
display list or display buffer) to be displayed. However, the object is not
displayed on the screen.

In order for you to see the objects in the buffer displayed on the screen, one of
these conditions must occur:

e Buffer becomes full (normally 511 objects).

e Execution reaches an interactive command.

e A DRAW/ALL or DRAW/obj statement is reached
e Execution reaches a HALT statement.

e A run-time error occurs.

7
210’
7

©EDS GRIP Fundamentals 10—-19
All Rights Reserved Student Guide

7
710
7

Object Access

DRAW: Control Object Display

Synopsis

Description

Parameters

DRAW/{ON | OFF | ALL | obj list}

Controls the display of objects. When an object is defined, it is
added to the database and also to the display list. The display
list which may contain up to 511 objects is periodically emptied
and the objects displayed. This display takes place under one of
the following occurrences:

« Before any interactive command is executed.
o When the HALT function is executed.

o When the display list is full.

o When a run time error occurs.

e When you issue the DRAW/ALL command.

ON

Minor word that causes normal display operations to occur,
including adding subsequently defined objects to the display list.
DRAW]/ON is the default.

OFF

Minor word that suspends all display operations. This includes
not adding subsequently defined objects to the display list, as
well as not changing the display for commands such as VIEWE
(Edit View) or LAYR(Retrieve Layout). If you want to see the
result of these while DRAW/OFF is in effect, use DRAW/ALL,
which ignores the DRAW/OFF setting. While in effect,
DRAW/OFF also suppresses temporary display such as asterisks
and arrows.

ALL

Minor word that regenerates the display of all objects including
those which were previously inhibited (either interactively or
with the DRAW/OFF command). The display list is emptied
and rebuilt to include the regenerated objects. This minor word
does not change the display state as specified by DRAW/ON or
DRAW/OFE

obj list

Causes all objects in the object list, which may have been
inhibited, to be added to the display list. If the object is a
group, it is not displayed. If you wish to display group members,
you must put each in a separate statement.

10-20

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

Object Access

Example

Declarations

Geometry Definition

Draw Statement

Draw Statement

NOTE

This example demonstrates the use of the DRAW statement.
ENTITY/LN1,LN2,LN3,L.N4,CR1,CR2

LN1=LINE/-2,0,0,-1
LN2=LINE/0,-1,0,1
LN3=LINE/0,1,-2,0

DRAW/OFF
CR1=CIRCLE/-.625,0,.5
CR2=CIRCLE/.625,0,.5

DRAW/ON
LN4=LINE/-2,0,0,0
HALT
o2 P
3
LN4
oy 5

Figure 10—1 Use of the DRAW/OFF and DRAW/ON statements

If certain system and drafting parameters such as the line
font, dash size, and character size have been changed, the
objects in the display list will assume those characteristics.

7
210’
7

©EDS GRIP Fundamentals 10=21
All Rights Reserved Student Guide

Object Access

Example This example demonstrates the use of the DRAW statement.
Declarations ENTITY/LN1,LN2,LN3,L.N4,CR1,CR2

Geometry Definition LN1 = LINE/-2,0,0,-1
LN2= LINE/0,-1,0,1
LN3= LINE/0,1,-2,0

Draw Statement DRAW/OFF
CR1= CIRCLE/-.625,0,.5
CR2= CIRCLE/.625,0,.5

Draw Statement DRAW/ON
LN4 = LINE/-2,0,0,0

Draw Statement DRAW/CR1,CR2
HALT

<
b
N2

CRI1 Ly, Rz

Figure 10—2 Use of the DRAW/OFEF, DRAW/ON and DRAW/obj statements

7
710
7

GRIP Fundamentals ©EDS ioraphics NX 2
10-22 Student Guide All Rights Reserved Unigraphics N.

Object Access

DELETE: Delete

Synopsis
Description
NOTE
NOTE
Parameters
Example
Declarations
Geometry Definition
Objects Deleted
NOTE

DELETE/{obj list|ALL}

Permanently removes objects from the viewing screen and the
data model.

To remove a component, use the DELETE command.

Sectioning objects, including section lines and system
generated crosshatching, cannot be deleted using the
DELETE command. Use the VIEWD command to
remove the section view. If a detail of a section view is
removed, the section line remains intact until removal of
the parent section view.

obj list
A list of existing objects which are to be deleted.

ALL

Minor word which indicates that all objects which satisfy the
following conditions are to be deleted:

1. must be a selectable object type/subtype
2. must not be blanked
3. must reside on a layer which is selectable in the work
view
This example demonstrates the use of the DELETE statement.
ENTITY/P(3),LN1,CR1

P(1)=POINT/0,-.5
P(2)=POINT/0,0
P(3)=POINT/1,1.5

LN1=LINE/-1,.5,1,.5
CR1=CIRCLE/CENTER,P(1),TANTO,LN1

DELETE/LN1,P

Objects which may be necessary for the construction of
other objects, such as the line LN1, may be deleted when

they are no longer of any value. //1/0///
/ /
All of the points in the array P are deleted. ////A

©EDS GRIP Fundamentals 10=23
All Rights Reserved Student Guide

7
710
7

Object Access

Global Parameter Access (GPA) Symbols

Global Parameter Access (GPA) symbols allow you to access the global
preferences of a part while in a GRIP program. The global preferences you
have available include many of the parameters found in the Modeling and
Drafting Preference and WCS pulldown menus. The first character of a GPA is
always an ampersand (&) followed by from 1 to 6 alpha characters.

Each GPA symbol is associated with either a unique global parameter, or a
constant, and has an access type, a data type, and a data range. Access types,
data types and ranges are described below.

Access Type (Read and Write Options) of GPA Functions

Access type defines the read/write status of the GPA. GPAs contain data which
can be extracted (read) for use in your program. Some symbols allow you to
directly alter the data (write) by assigning the properly valued data to the GPA.
Abbreviations of access types used in the GPA format summary are as follows:

RO (read only)
WO (write only)
RW (read write)

C (constant) read only

Data Types Assigned to GPAs

Data type defines whether a particular GPA is entity, number, or string valued.
The data associated with a GPA, if entity valued, must be treated like an object
as it is assigned or extracted. If you read an entity valued GPA and assign the
data to a variable, the variable must be declared as an ENTITY.

The data types for GPA symbols are the following:

NUMERICAL (N)

ENTITY (E)

STRING (S)

NUMERICAL ARRAY (NA(I))
OF DIMENSION(I)

10-24

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

Object Access

Entity Valued GPAs

Entity valued GPAs return a specific object from the work part. Variables
which store these values must be declared with the ENTITY/ statement.

Example Part attribute entity valued GPA
ENTI TY/ PART

PART=&PARATT

Number Valued GPAs

Number valued GPAs return a number within a specified range. Variables
which store these values should be declared with the NUMBER/ statement.

Example Part units number valued GPA

NUMBER/ unts

unts = &UNI T

| FTHEN unts ==
val =val / 25. 4
ENDI F

String Valued GPAs

String valued GPAs, when assigned to a variable, must be declared as a
STRING as illustrated in the example below.

Example Work view string valued GPA
STRI NG cur _vi ew 30)

cur _view = &WORKVW

7
210’
7

©EDS GRIP Fundamentals 10=25
All Rights Reserved Student Guide

Object Access

GPA Range

The data range represents the set of values the global parameter may assume.
Range defines the value which can be assigned to a GPA. Some GPAs have
multiple parameters (e.g. &ON or &OFF) which have numerical values that lie
within their range. These parameter options have a constant, single numerical
value which cannot be changed (e.g. the value of &ON is always 1). The range
of string valued GPAs is defined in a number of characters allowed in the string
(e.g. &DEFCLS has a range of 8 characters).

System Constants

The GPAs that deal with module preferences are not associated with any other
GPAs and have no data type, access type, or range. These GPAs are as follows:

&NULENT
&NULSTR
&Pl

&NULENT determines if an object identifier exists in the data base by testing
its status. LN1 could be tested as follows:

Example Using the &NULENT GPA constant
| F/ LN1<>&NULENT, DELETE/ LN1

If LNT1 is not a null object, it will be deleted. This can be used to avoid run time
errors when the DELETE statement is used with a null object.

&NULSTR works like &NULENT except that it tests to see if a string has no
characters. For example, you could test to see if STR contained any characters

as follows:
Example Using the &NULSTR GPA constant
| F/ STR==&NULSTR, JUMP/ LBL010:
LBLO10: TEXT/’ NO CURRENT TXT-ENT TEXT , STR, RESP
v/, JUWMP/ LBLO10O: , TERM , , , , RESP
/ 4
»10
’////; If STR was a null string, the user will be prompted to enter the text.
10=26 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Object Access

&PI contains the constant value for PI. It can be used anywhere a numerical
value is valid.

Example The &PI GPA constant

ENTI TY/ PT1, PT2, CR1
PT1=PO NT/ 0, 0

PT2=PO NT/ 1, 1.5

CR1=Cl RCLE/ CENTER, PT1, PT2
R=&RADI US(CR1)

ANS=&PI * (R**2)

ANS would equal the area of CR1.

7
210’
7

©EDS GRIP Fundamentals 10=27
All Rights Reserved Student Guide

7
710
7

Object Access

Active Part Status
Function GPA Symbol Access Data Type
Type
Active Part Status &ACTPRT R/O |Number
[1..2]

For the &ACTPRT GPA, the following values are returned:

1 = No Active Part
2 = Active Part

In programs that create or access part file information, a check
should typically be made to insure that a part file is active. This
can be done using the &ACTPRT GPA, as follows

Example

| FTHEN &ACTPRT == 1
MESSGE ' Active part not available ,$
"Open file and restart progran

Decimal Places

JUWP/ CANCEL:
ENDI F
Function GPA Symbol Access Data Type
Type
Places Past Decimal |&DECPL R/W | Number
Point [0..9]

Controls the places displayed to the right of the decimal for
numerical displays. This GPA affects the decimal places
displayed for numerical displays, such as the PRINT command.
&DECPL also affects the FSTRL and FSTR functions discussed
in Chapter 7.

Example

NUMBER/ sv_decpl

sv_decpl = &DECPL $$ save ori gi nal

&DECPL = 2
PRI NT/ ' Current hole radius = ' +FSTRL(hr)
&DECPL = sv_decpl $$ restore original

10-28 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Object Access

Work Layer
Function GPA Symbol Access Data Type
Type
Current Work Layer | &«WLAYER R/W | Number
[1..256]
Controls or returns the number of the current work layer.
Example
NUMBER/ sv_w ayer
sv_wW ayer = &W.AYER $$ save original
&W.AYER = 50
hol arc = CRCLE/ xc, yc, zc, hr
&W.AYER = sv_w ayer $$ restore original
Work View
Function GPA Symbol Access Data Type
Type
Current Work View |&WORKVW R/W | String
30 characters

Changes or returns the current work view. When changing the
work view, the desired new work view must be a part of the

current layout.

Example

STRING sv_wor kvw(30)

sv_wor kvw = &WORKVW
EWORKVW = * Rl GHT”

;&V\D?KV\N = sv_wor kvw

©EDS

All Rights Reserved

$$ save origi nal

$$ restore original

7
210’
7

GRIP Fundamentals
Student Guide 10 =29

Object Access

Unit of Measurement
Function GPA Symbol Access Data Type
Type
Examine Unit of &UNIT R/O Number
Measurement [1..2]

For the &UNIT GPA, the following values are returned:

1 = Inches

2 = Millimeters

Example

| FTHEN &UNI T ==

MESSG ' Part is English’
ELSE/
MESSE ' Part is Metric’
ENDI F
User ID
Function GPA Symbol Access | Data Type
Type
User Identification &USERID RO |String
String 30 Char
Returns the current user ID to a receiving variable or GRIP
statement.
;/////
/10
AL
10-=30 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Object Access

Activity: Entity Cycling

Write a GRIP program to cycle through selectable objects in a part file,
move the objects to different layers based on their type, and create layer
categories.

1 Open the part grp_cycle.prt.

1 Create the following layer categories:

Category Name Layer
MODEL 1-100
SOLIDS 1-20
CURVES 41-60
DATUMS 61—-80

1 Use the INEXTE and NEXTE commands to cycle
through selectable objects.

1 Move the following type objects to the layers shown:

Object Type(s) Layer
Solid 70 1
Lines and Arcs 3,5 41

Datum Planes and Axes 196,197 61

7
210’
7

©EDS GRIP Fundamentals 10-=31
All Rights Reserved Student Guide

Object Access

(This Page Intentionally Left Blank)

7
; 10
7

GRIP Fundamentals ©EDS ioraphics NX 2
10-32 Student Guide All Rights Reserved Unigraphics N.

Transformations

Transformations

Lesson 11 /S
/ /
/ 11
A,

Objectives

e Recognize situations where transformations can be used to assist in
geometry creation.

e Recognize the process for performing transformations in a GRIP

program.
e Demonstrate understanding of the types of transformations that can
be performed in GRIP.
©EDS GRIP Fundamentals 11-1

All Rights Reserved Student Guide

7Y
; 11~/
Y,

Transformations

Introduction

The GRIP statements used to transform objects perform the same functions
defined in Unigraphics using the Edit—Transform option.

Transformations are performed in GRIP using a matrix. There are three steps
which must be followed as part of the transformation process, as described
below:

1. Construct the geometry which will be the subject of the
transformation.

2. Define the transformation matrix using the MATRIX command. This
statement provides a variety of transformation operations which
include: translation, scaling, mirroring, rotation, and combination
(reposition).

3. Once the matrix is defined, the transformation is performed by using
the matrix in the TRANSF major word.

GRIP does not allow transformation about a specific point or line in a single
step. The scaling and rotation commands operate about the WCS origin or one
of the principal axes, respectively. To perform these operations about another
origin, it is necessary to use a series of GRIP statements. These operations will
be described later in the chapter.

Matrices

A numerical matrix array is used by GRIP to process the transformation. This
matrix array operates on a previously defined object. The matrix array must be
declared as a numerical array with a dimension of 12 using the NUMBER/
statement. For example, the following declarations could be used to declare a
matrix array:

NUMBER/ tr_mat(12), mat_list(4,12)

In the second declaration, mat_list is a two dimensional array which contains
four matrices.

11-2

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

Transformations

Graphic Image of a Matrix

7%
/ 11
1 0 0 0 X ///A
0 1 0 0
Y

0 0 1 N

) - ~ J_ﬂ

Values for Scaling, Translation

Mirroring, etc.

Figure 11-1 Identity or TRANSL/0,0,0 Matrix

Table 11-1 Transformation Commands

Function Format

Transforms specified objects =~ TRANSF/matrix,object
using the defined matrix. [L[MOVE][,TRACRV]
Translates a delta distance MATRIX/TRANSL,dx,dy,dz
Scales about the WCS origin MATRIX/SCALE,

Mirrors about an existing line
or plane.

Rotates about the ZC axis
Rotates about the XC axis
Rotates about the YC axis

Combines 2 matrix operations
The order is important.

{scale | cx,cy,cz}

MATRIX/MIRROR line | plane

MATRIX/XYROT,angle
MATRIX/YZROT,angle
MATRIX/ZXROT,angle
MATRIX/matrix1l,matrix2

©EDS
All Rights Reserved

GRIP Fundamentals

Student Guide 11-3

7Y
; 11~/
Y,

Transformations

TRANSF: Transformation

Synopsis obj list = TRANSF/matrix,obj list[, MOVE] [, TRACRV]

Description Invokes various previously defined matrices that were created
by the MATRIX statement. Execution of this statement can
either cause new objects to be created, or the original objects to
be moved, and provides a means for generating trace curves.
By default, the execution of this transformation creates a copy
of the original objects and is object valued.
If you wish to move the original objects, you must use the minor
word MOVE. In this case, do not use the TRANSF statement as
an assignment.

Parameters matrix
A previously defined matrix.
obj list
An existing object or an object list which may consist of object
arrays.
MOVE
Minor word which indicates that the specified object is to be
physically modified and that the modified object will remain on
its original layer. If MOVE is not specified, the system makes a
copy of the object, which then resides on the current work layer,
and the original object remains unchanged.
TRACRV
Minor word which indicates that trace curves are to be
generated as the object is moved. Trace curves, which are
straight line segments, are generated by the end points of the
curves. The trace curves will be straight lines even if the
transformed objects are rotated.

11—4 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Transformations

Example

Declarations

Geometry Definition

Matrix Definition

Transformation

LN(8)

TRACE
CURVE

This example demonstrates the transformation of several

objects using the TRANSF statement. /S
/

Trace curves are also created by specifying the TRACRYV minor / 117

word. Y,

ENTITY/LN(8)

NUMBER/MAT1(12)

LN(1) =LINE/.25,.25,3,.25

LN(2) =LINE/3,.25,3,2

LN(3) =LINE/3,2,.25,2

LN(4) =LINE/.25,2,.25,.25
MAT1 = MATRIX/TRANSL,0,0,1

LN(5..8)=TRANSF/MAT1,LN(1..4), TRACRV

LN(4)

TRACE
CURVE LN(B)

Figure 11-2 A transformation with trace curves

©EDS GRIP Fundamentals 11-5
All Rights Reserved Student Guide

Transformations

MATRIX: Translate

'//////
7117
7./ Synopsis

Description

Parameters

Example
Declarations

Geometry Definition
Matrix Definition

Transformation

L.

matrix = MATRIX/TRANSL,dx,dy,dz

Defines a matrix used to perform a linear transformation of a
delta distance in XC, YC, and ZC.

TRANSL

Minor word which indicates that the values in the field which
follows will define a matrix which represents a translation vector
with work coordinates of dx, dy and dz.

dx, dy, dz

The delta distances or displacement values in each of the three
axes.

This example demonstrates the creation of a circle (CR2) by
transforming a copy of CR1 using a translation matrix.

ENTITY/CR1,CR2
NUMBER/MAT1(12)

CR1 =CIRCLE/-1,-5,.5
MAT1=MATRIX/TRANSL,2,1,0
CR2 =TRANSF/MAT1,CR1

CRZ

OTO 00 \

1

2. 0000 —

Figure 11-3 Translation matrix

GRIP Fundamentals ©EDS Unigraphics NX 2
11-6 Student Guide Al Rights Reserved grap

Transformations

MATRIX: Scale

Synopsis

Description

Parameters

Example
Declarations

Geometry Definition
Matrix Definition
Transformation
Matrix Definition

Transformation

matrix = MATRIX/SCALE({,s|,xc,yc,zc} ;/1/1/2

/
Defines a matrix which performs scaling about the origin of the Y,
work coordinate system. Non-uniform scaling may be applied to
curves and B-surfaces only.

SCALE

Minor word which indicates that the value in the field which
follows represents a numerical scale factor by which a
transformation can be performed.

S

The scaling factor which must be greater than zero. If the scale
factor is less than one, the objects transformed will be reduced
in size. If the scale factor is greater than one, the objects
transformed will be enlarged.

X¢, y¢, ZC

Allow you to apply different scale factors to the XC, YC, and

ZC axes rather than using one scale factor for all three
directions.

This example demonstrates the creation of two circles by
transforming CR1 using a scaling matrix.

ENTITY/CR1,CR2,CR3
NUMBER/MAT1(12)

CR1 =CIRCLE/0,0,.5
MAT1=MATRIX/SCALE,2
CR2 =TRANSF/MAT1,CR1
MAT1=MATRIX/SCALE,.5
CR3 =TRANSF/MAT1,CR1
CR2

CR1

Figure 11—4 Scale matrix

©EDS GRIP Fundamentals 11=7
All Rights Reserved Student Guide

Transformations

MATRIX: Mirror

/////
7117 / Synopsis

Y,

Description

Parameters

Example
Declarations
Geometry Definition

Matrix Definition

Transformation

matrix = MATRIX/MIRROR,{line | plane }

Represents a reflection of objects through a plane. The plane
may be normal to the current work plane by specifying a line
containing the plane, or the plane may be a previously defined
plane object anywhere in space.

MIRROR

Minor word which indicates that the object in the field which
follows will define a matrix through which a transformation may
be performed.

line
An existing line which lies in an imaginary plane. The imaginary
plane is normal to the XY plane of the work coordinate system.

plane
An existing plane.

This example demonstrates the creation of two lines by
transforming two previously defined lines using a mirror matrix.

ENTITY/LNO,LN1,LN2,LN3,LN4
NUMBER/MATI1(12)

LNO =LINE/0,1,0,-1
LN1 =LINE/-15,.5,-.5,0
LN2 =LINE/-1.5,-.5,-.5,0

MAT1=MATRIX/MIRROR,LNO

LN3 =TRANSF/MAT1,LN1
LN4 =TRANSF/MAT1,LN2

v, \/\\\’5

LNO

G Nz

Figure 11-5 Mirror matrix

GRIP Fundamentals ©EDS Unigraphics NX 2
11-8 Student Guide Al Rights Reserved grap

Transformations

MATRIX: Rotate
7
Synopsis matrix = MATRIX/{XYROT |YZROT | ZXROT},angle y 117
.
Description Represents the rotation in a principal plane of the work
coordinate system about the axis normal to the plane. The
principal planes are XY, YZ, and ZX.
Parameters XYROT, YZROT, ZXROT
Minor words which indicate the principal plane in which
rotation will take place.
Rotation of objects takes place in the plane of the object,
parallel to the specified principal plane, if the object or objects
do not lie on that principal plane.
angle
A numerical value which is the desired angle of rotation. A
positive rotation is from the positive X axis to the positive Y axis
for XYROT from the positive Y axis to the positive Z axis for
YZROT, and from the positive Z axis to positive X axis for
ZXROT.
Example This example demonstrates the creation of a circle (CR2) by
transforming CR1 using a rotation matrix in the XY principal
plane.
Declarations ENTITY/CR1,CR2
NUMBER/MAT1(12)
Geometry Definition CR1 =CIRCLE/1,-.5,.5
Matrix Definition MAT1=MATRIX/XYROT,45
Transformation CR2 =TRANSF/MATI1,CR1

/\ - 45°0"
ORIGIN

Figure 11-6 Rotation matrix

©EDS GRIP Fundamentals 11-9
All Rights Reserved Student Guide

7Y
; 11~/
Y,

Transformations

MATRIX: Multiple Transformations (Concatenation)

Synopsis

Description

Parameters

NOTE

Example

Declarations

Geometry Definition

Matrix Definition

Transformation

Matrix Definition

matrix = MATRIX/matrix1,matrix2

Represents the product of two previously defined matrices.
This matrix can be used to reposition objects, performing two
transformations at the same time (e.g., translating and rotating,
translating and scaling).

matrix1,matrix2

Two previously defined matrices which will be combined into
one.

The resulting geometry will depend on the order in which
the previously defined matrices are specified. Matrix 1
will be applied to the geometry first, followed by matrix 2.

This example demonstrates the creation of a series of mounting
slots by transforming an existing slot using a reposition matrix.
This example also demonstrates the use of a single numerical
array and subscripted variable names for the matrices.

ENTITY/LN(2),CR(3),PT(2),GRP(6)
NUMBER/MAT(4,12)

CR(1)=CIRCLE/0,0,4

LN(1)=LINE/2,.25,3,.25

LN(2)=LINE/2,-.25 3,-25

PT(1)=POINT/2,0

PT(2)=POINT/3,0
CR(2)=CIRCLE/CENTER,PT(1),RADIUS,.25 START,90,EN
D,270
CR(3)=CIRCLE/CENTER,PT(2),RADIUS,.25,START,270,EN
D,90

GRP(1)=GROUP/LN,CR(2..3),PT(1),PT(2)

MAT(1,1..12)=MATRIX/TRANSL,-1,0,0
MAT(2,1..12)=MATRIX/XYROT,45
MAT(3,1..12)=MATRIX/MAT(1,1..12), MAT(2,1..12)

GRP(2)=TRANSF/MAT(3,1..12),GRP(1)
GRP(3)=GROUP/GRP(1..2)

MAT(4,1..12)=MATRIX/XYROT,90

GRIP Fundamentals ©EDS Unieraphics NX 2
11-10 Student Guide All Rights Reserved 8rap

Transformations

Transformation GRP(4)=TRANSF/MAT(4,1..12),GRP(3
GRP(5)=TRANSF/MAT(4,1..12),GRP(4 777
GRP(6)=TRANSF/MAT(4,1..12),GRP(5 711 ;

Repositioned ////A

slot

Original
slot

Figure 11-7 Repositioning of objects

Example This example demonstrates the creation of two circles by
transforming a previously defined circle using a reposition
matrix. In this case, the object has been rotated and scaled.

Declarations ENTITY/CR1,CR2,CR3
NUMBER/MAT1(12),MAT2(12),MAT3(12)

Geometry Definition CR1 =CIRCLE/,.5,.25

Matrix Definition MAT1=MATRIX/XYROT,-90
MAT2=MATRIX/SCALE,2
MAT3=MATRIX/MAT1,MAT?2

Transformation CR2 =TRANSF/MAT3,CR1
Matrix Definition MAT1=MATRIX/XYROT,90
MAT3=MATRIX/MAT2,MAT1
Transformation CR3 =TRANSF/MAT3,CR1
80°0° -90°0°

<>fCF€l
A
ORIGIN

Figure 11—8 Multiplication matrices

©EDS GRIP Fundamentals 11-11
All Rights Reserved Student Guide

Transformations

Activity Transforming the L-Shape

7Y
; 11~/
Y,

This project will provide practice in using DO loops, transformations, and
subscripted variables.

Follow these directions:

1 Mirror the image created in the L-Shape activity about its
leftmost vertical line to create a new shape that looks like a
“T”. Use only one transformation command (TRANSF/).
Use a DO loop and subscripted variables so that each new
line that is created is assigned a unique variable name.

] Delete the vertical line that was used as the mirror line.

1 Check for an active part in the beginning of you program.

GRIP Fundamentals ©EDS . .
1-12 Student Guide All Rights Reserved Unigraphics NX 2

Functions

Functions
Lesson 12

Objectives

e Demonstrate an understanding of the variety of mathematical, string,
and entity functions available in GRIP.

e Recognize possible uses of these functions.

©EDS GRIP Fundamentals 12-1
All Rights Reserved Student Guide

7
127
7,

Functions

Processing Arithmetic Expressions

An arithmetic expression is the combination of constants, variables, and
arithmetic operators. In an arithmetic expression, the operators are evaluated
in the same order as in FORTRAN.

The hierarchy of these operators is shown below. The operators with the
highest priority are at the top and the operators with the lowest priority are at
the bottom. In cases where operators of equal priority appear in an expression,
the system will evaluate the expression from left to right.

Priority Operator Meaning Examples
Highest ** Exponentiation A**B
/ Division & Multiplication 2/ 3, 2*3
+ - Addition & Subtraction 4+2
Lowest = Assignment C=A-D
Parentheses
The order in which the operations in an expression are performed can be
controlled using parentheses. Expressions within parentheses are evaluated
before expressions without parentheses. If expressions in parentheses are
nested within expressions in parentheses, the expression in the innermost set of
parentheses is evaluated first.
Example Use of Parentheses
The use of parentheses in the evaluation of numerical
expressions is shown below.
4+2*5-12/ 3 = 10
(4+2)*5-12/3 = 26
4+2*(5-12/ 3) =6
4+2*((5-12)/3) = -2/3
12=2 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Functions

Mathematical Functions

The tables below describe the mathematical functions available in GRIP

Table 12—1 Arithmetic Functions

Format Description

SQRTF(number) Returns the square root of the number.

LOGF(number) Returns the natural log of the number.

EXPF(number) Returns “e” raised to the power of the
number.

ABSF(number) Returns the absolute value of the
number.

INTF(number) Returns the integer portion of the
number.

MODF(num1,num?2) Returns the remainder of the division

of num1 by num?2.
MINF(num1,num2,...,numN) Returns the smallest number.

MAXF(num1,num2,...,numN) Returns the largest number.

Table 12—2 Trigonometric Functions

Format Description

SINF(angle) Returns the sine of the angle.

COSF(angle) Returns the cosine of the angle.
ASINF(number) Returns the angle whose sine is 'number’.
ACOSF(number) Returns the angle whose cosine is 'number’.

ATANF(number) Returns the angle whose tangent is 'number’.

©EDS GRIP Fundamentals 12-=-3
All Rights Reserved Student Guide

Functions

Standard mathematical functions are available in GRIP for arithmetic and
trigonometric functions. These functions return either numbers or angles.
Vector functions are not described in this manual. Mathematical functions are
characterized as follows:

e The function names end with the letter F.

e The function operates on the number or expression within parentheses
following the function.

Example
/e The examples below are all valid uses of SQRTF function:
ary
/ /
) D = SQRTF(9)
L dia = 4*(SORTF(18+63) + 2*r)
C = SQRTF(a**2 + b**2)
12—4 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Functions

Arithmetic Functions

The GRIP arithmetic functions are listed in Table 12—1. Presented below is a
short description and example of each of the functions listed in Table 12—1.

SQRTF returns the square root of a number (0 or greater). Using the square
root function for an example:

Example SQRTF
A=SQRTF(81) A equals 9

LOGEF returns the natural logarithm of a number (0 or greater) to a receiving
variable or GRIP statement.

Example LOGF

X=LOG~(1) X equals 0
EXPF returns the value of “Y” by using the standard equation Y = eX, where
“X” equals the natural log of the number “Y”, to a receiving variable or GRIP

statement. “X” is represented by the value arg. EXPF is the inverse natural
logarithmic function.

Example EXPF
ANS=EXPF(1) ANS = 2.71828

ABSF returns the absolute or unsigned value of the argument to a receiving
variable or GRIP statement. The argument may be a numerical value, variable,
Or expression:

Example ABSF

X=ABSF(-50) X equals 50
Y=150-200

X=ABSF(Y) X equals 50
X=ABSF(150-200) X equals 50
A=200

B=150

X=ABSF(B-A) X equals 50

INTF returns the integer portion of the argument. The integer value is defined
by truncating the decimal portion of the number. The value in arg must be
between +32767 or invalid results will be returned.

©EDS GRIP Fundamentals 12-5
All Rights Reserved Student Guide

7
127
7,

Functions

Example INTF
A=I NTF(4.9979) A equals 4

MODF returns the remainder of the division arg/mod. The value returned will
be in the base of the denominator “mod”. Therefore, for most practical
applications the value mod should be used as an integer.

B=MODF(X, Y)
is equivalent to the following expressions:

A=XI'Y
B=ABSF(A~ NTF(A)) *Y

Example = MODF

B=MODF(14, 8) B equals 6
nunml=7.5

nun=3

C=MCDF(numl, nun®) MODF equals 1.5

MINF returns the smallest numerical value in the argument list to a receiving
variable or GRIP statement. This statement is limited to 102 arguments.

Example MINF
SMALL=M NF(-1, 2, 4, 10, 7) SMALL equals —1

MAXF returns the largest numerical value in the argument list to a receiving
variable or GRIP statement. This statement is limited to 102 arguments.

Example = MAXF
Bl G=MAXF(-1, 2, 4, 10, 7) BIG equals 10

12-6

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

Functions

Trigonometric Functions

The GRIP trigonometric functions (SINE, COSE, ACOSE and ATANF) are
listed in Table 12—2.

SINF, the sine function, returns the sine of the argument to a receiving variable
or GRIP statement. The returned value will be between —1 and 1 inclusive.
The range of the specified angle in degrees is infinite.

Example SINF

SIN = SI NF(95) SIN equals .9962
SIN = SI NF(405) SIN equals .7071

In the examples above, SIN will equal the sine of the angle (i.e.,
95°, or 405°). The angle is in degrees, but may be a number,
numeric variable, or expression.

COSE, the cosine function, returns the cosine of the argument to a receiving
variable or GRIP statement. Although the returned value will be between —1
and 1 inclusive, the range of the specified angle in degrees is infinite.

Example = COSF

CCS = COSF(95) COS equals —.0872
CCS = COSF(405) COS equals .7071

In the examples above, COS will equal the cosine of the angle
(i.e., 95°, or 405°). The angle is in degrees, but may be a
number, numeric variable, or expression. Remember, tangent
equals sine divided by cosine:

C=SI NF(angl e) / COSF(angl e)

©EDS GRIP Fundamentals 12=7
All Rights Reserved Student Guide

Functions

ASINE, the arcsine function, returns an angle for which the argument is the sine
to a receiving variable or GRIP statement. The returned value will be between
—90 and 90 degrees inclusive.

Example ASINF
ANG = ASI NF(-. 5) ANG equals —30

ACOSF returns an angle for which the argument is the cosine to a receiving
variable or GRIP statement. The returned value will be between 0 and 180
degrees inclusive.

v,
2 12 Example @ ACOSF
27 ANG = ACOSF(. 5) ANG equals 60

ATANF returns an angle for which the argument is the tangent to a receiving
variable or GRIP statement. The returned value will be between —90 and 90
degrees inclusive.

Example ATANF
ANG = ATANF(2.5) ANG equals 68.1986

GRIP Fundamentals ©EDS Unigraphics NX 2
12-8 Student Guide Al Rights Reserved grap

Functions

String Functions

GRIP provides you with two types of string functions: string—valued and
number—valued. String—valued functions return character strings and
number—valued functions convert strings into numbers. Each are briefly
described below.

String-valued Functions

Character valued functions either generate or manipulate characters in a string.
For example, the function BLSTR creates blank spaces in a string. Since blanks
are a form of a text character, BLSTR is character valued.

DATE

TIME

BLSTR(n)
CHRSTR(n)
DFSTR(n)
FSTR(n)

ISTR(n)
REPSTR(s1,s2,s3,p)
SUBSTR(s,p,c)

Number-valued Functions

Number valued functions return numerical values concerning characteristics
pertaining to the specified characters. For example, the function ASCII returns
the ASCII equivalent of a specified character string in decimal form. Since
GRIP considers this a number, ASCII is a number valued function.

ASCII(s,p)
FNDSTR(s1,s2,p)
LENF(s)
VALEF(s)

©EDS GRIP Fundamentals 12—9
All Rights Reserved Student Guide

7
127
7,

Functions

Return Current Date

Synopsis str=DATE

Description Returns the current date as a ten or twelve character literal string.
The format of the string is set by &FULLDT (see the following page).
&FULLDT supports the following formats:
mm——dd——yy
mm——dd——yyyy
mm—dd—yyyy
If you do not set &FULLDT, the DATE command defaults to the
following format:
mm——dd——yy

Example This example demonstrates the three formats available using the
&FULLDT GPA.
DELIM/”’
&FULLDT =0
print/&FULLDT =", &FULLDT
print/DATE = "+DATE
print/’’
&FULLDT =1
print/&FULLDT =", &FULLDT
print/DATE = "+DATE
print/’’
&FULLDT =2
print/&FULLDT =", &FULLDT
print/DATE = "+DATE
HALT
The program produces the following results:
&FULLDT = .0000
DATE = 08—-21—-98
&FULLDT = 1.0000
DATE = 08——-21—-1998
&FULLDT = 2.0000
DATE = 08—-21-1998

12—-10 GRIP Fundamentals ©EDS Unigraphics NX2

Student Guide All Rights Reserved

Functions

Set Full Date Flag

Synopsis

Description

Characteristics

Constant Values

Example

&FULLDT

Enables the DATE command to output the full date
(mm——dd——yyyy). The full date includes the century portion of the
date when &FULLDT is set to 1 or 2. Otherwise, the DATE
command outputs the year without the century (mm——dd——yy).

Read/Write ~ Number [0..2]

You can set &FULLDT to 0, 1, or 2. These values correspond to the
following formats:

0 =mm-—dd——-yy
1 = mm——dd——yyyy
2 = mm—dd—yyyy

&FULLDT=1
PRINT/DATE
&FULLDT=0
PRINT/DATE
HALT

If the date were July 6, 1999, then the above program would produce:

07——-06——-1999
07—-06—-99

©EDS GRIP Fundamentals 12-11
All Rights Reserved Student Guide

7
127
7,

Functions

Return Current Time

Synopsis

Descripti

Example

str=TIME

on Returns the current time as a five character literal string

HH:MM.

The following example demonstrates the use of the TIME

function.
STRING/STR(32)

Function

Assigned Value

STR="The time is "+ TIME

STR=The time is 12:45

12-12

GRIP Fundamentals ©EDS
Student Guide All Rights Reserved

Unigraphics NX 2

Functions

Create Blank Characters

Synopsis

Description

Parameters

Example

str=BLSTR(n)

Generates the number of blank characters, spaces, specified by
the value n. The value of n must be from 0 to 132 inclusive.

n

The number of characters to be created. The number must be a
positive integer value between 0 and 132 inclusive.

This example demonstrates the creation of a string with blank
characters.

STRING/STR(4,15)
STR(1)="X'+BLSTR(15)+’Y’
PRINT/STR

The following string would be printed on the CRT:
X Y

BLSTR can be imbedded in a string (as above) or assigned
directly to a variable which will space a table of values as
follows:

S=BLSTR(10)

STR(2)="2.5+S+’1.25
STR(3)="3.6'+S+’1.25
STR(4)="6.2+S+72.27
PRINT/STR

The statements above would create the following table on the
CRT:

2.5 1.25
3.6 1.25
6.2 2. 27

©EDS GRIP Fundamentals 12—-13
All Rights Reserved Student Guide

7
127
7,

Functions

Number of Characters in a String

Synopsis num=LENF(’string’)
Description Returns the number of characters in a string. A string may be
declared as containing a maximum of 132 characters, but the
actual number of characters in the string may be less than 132.
Leading and trailing as well as imbedded blanks are counted.
Parameters ’string’
The literal string or string variable name of a string whose
length in characters will be returned.
Example This example demonstrates obtaining the length of several
strings.
STRING/ABC(10)
Function Assigned Value
ABC="MESSAGE’
ANS=LENF(ABC) ANS=7
ANS=LENF(XY) ANS=2
12—-14 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Functions

Convert Integer to Character String

Synopsis str=ISTR(n)

Description Converts the integer portion of a real number into a character
string. The maximum number of characters which this function
can return is eight and the value of n must be any valid
Unigraphics number. To return more than eight characters, use
the ISTRL statement.

Parameters n

Real number whose integer portion will be converted to a
character string. The non—integer (to the right of the decimal
point) portion will be truncated.

Example This example demonstrates the use of the ISTR function to
convert the integer portion of a number to a string.

ENTITY /ent(1000)
NUMBER/n

MASK/70
IDENT/ Select Solids to Delete’,sol, CNT,n,resp

PRINT/Solids Selected = *+ISTR(n)

The following text will be printed to the listing window:

Solids Selected = 13

©EDS GRIP Fundamentals 12—-15
All Rights Reserved Student Guide

7
127
7,

Functions

Convert Real Number to Character String

Synopsis

Description

Parameters

Example

str=FSTR(n)

Converts a real number into a character string. The maximum number
of characters which this function can return is eight, including the
decimal point and minus sign. To return more than eight characters,
use the FSTRL statement.

The resulting string has a leading zero when the number is less than
one, but greater than negative one. You may use &DECPL to control
the number of decimal places that appear to the right of the decimal
point.

NOTE Please note the following items.

e This function rounds up rather than truncating digits when
specifying less than the significant number of digits with &KDECPL
or with the default number of decimal places if &DECPL is not
used. For example, if you set &DECPL=0, then FSTR(2.5) rounds
up to 3.

e Ifyouset &DECPL = 0, the decimal point does not return in the
string.

n

Real number which is to be converted to a character string. This
function returns a maximum of 8 characters (including the decimal
point and minus sign). If you attempt to convert a real number which
generates more than eight characters, then this command returns a
string of nines (e.g. ’9999999’) which indicates an overflow error.

This example demonstrates the creation of a note which contains the
radius of a circle.

ENTITY/CR1

NUM=2.5

CR1=CIRCLE/0,0,NUM

&DECPL=4

NOTE/0,—3, THE RADIUS ="+FSTR(NUM)
HALT

The NOTE reads as follows:
THE RADIUS = 2.5000

12—16 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Functions

Convert String to Real Number

Synopsis

Description

Parameters

Example

num=VALF(’string’)

Converts a string representing a numerical value into a real
floating point number. The object string must be in the numeric
form with a maximum of 132 characters including the decimal
point. This function is the reciprocal of the FSTR and FSTRL
functions.

’string’
The literal string or string variable name of a string which will
be converted to a real number.

This example will create a table of text on the screen which
represents a set of standard radii used on a drawing. The user
can then select the text to define the circle radius.

ENTITY/CR1
STRING/STR(8)
DATA/X,0,Y,0,Z,0

STR="0.375’
NUM=VALF(STR)

CR1=CIRCLE/X,Y,Z,NUM

©EDS GRIP Fundamentals 12—-17
All Rights Reserved Student Guide

7
127
7,

Functions

ASCII Value of a Character

Synopsis num=ASCII(’string’,pos)

Description Returns the ASCII value of the character specified by pos, in
decimal form. Refer to the ASCII Conversion Table for a
complete list of ASCII characters and their corresponding
decimal values. If pos is less than one or greater than the
number of characters in the string, the error message INVALID
CHAR POS will be displayed.

Parameters ’string’

The literal string or string variable name of the string to be
accessed.

pos

The character position of the character whose ASCII value will
be returned. Spaces (blanks) are counted in arriving at the
position. The pos must be an integer value greater than zero.

Example This example demonstrates the use of the ASCII function to
capitalize a name.

STRING/ usr(20)
NUMBER/v
BCKO010:
TEXT/Enter Last Name’,usr,resp
JUMP/BCKO010:,CANCEL:,resp
v = ASCII(usr,1) $$ Get ASCII value of first character
IFTHEN/v>=97 AND v<=122
len= LENF(usr)
usr = CHRSTR(v—32)+SUBSTR(usr,2,len—1)
ENDIF
CANCEL:
HALT
12—-18 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Functions

Return string with ASCII Value of N

Synopsis

Description

Parameters

Example

str=CHRSTR(n)

Returns a single character string that has an ASCII value equal
to the value n to a receiving variable or GRIP statement. The
receiving variable must be declared as a string.

n

An integer which represents a the ASCII value of the character
to be returned. The value of n must be from 32 to 126 inclusive,
as indicated in the ASCII conversion table.

This example demonstrates using the CHRSTR function to
capitalize a letter.

STRING/ rev(1)
NUMBER/N™

rev ="b’
v = ASClI(rev,1) $$ Returns ASCII value of character
IF/v>=97 AND v<=122, rev = CHRSTR(v—-32)

The resulting value of rev will be “B”. The number val was
assigned the ASCII value of “b” (98). Thirty two was
subtracted from n (66) and converted to a string (“B”) and
assigned to rev.

©EDS GRIP Fundamentals 12—-19
All Rights Reserved Student Guide

Functions

Replace Characters in a String

Synopsis str=REPSTR(object string’,’search string’,
’replacement string’,pos)

Description Replaces a specific character string with another. In this
function the object string is the string to be altered, the search
string is the string to be found and the replacement string the
new string. The pos value specifies a position in the string

:////; where the search is to begin. The search will continue to the
/ 12 last position in the string or until the first occurrence of the
77 search string is found. If the search string is not found, the

object string is returned unchanged. If pos is less than one or
greater than the number of characters in the string, the error
message INVALID CHAR POS will be displayed.

Parameters ’object string’

The literal string or string variable name of the string to be
altered.

’search string’

The set of character(s) which will be searched for in the
specified object string. Only the first occurrence of the search
string, past the starting position (pos), will be replaced.

’replacement string’

The set of character(s) which will replace the search string
characters. The number of characters in the search and
replacement strings do not have to be equal.

pos

Character position in the object string where the search will
begin. Pos must be an integer value greater than zero. Spaces
(blank characters) are counted in determining a character’s
position in the object string. The positions are counted from
left to right with the first character in the string being 1.

GRIP Fundamentals ©EDS igraphics NX 2
12-20 Student Guide Al Rights Reserved Unigraphics N

Functions

Example

S1:"THIS 1S A STRING'

P?S POS

POS
2

POS
16

Figure 12—1 Numeric positions of characters in a string

This example demonstrates the process of replacing several

strings.
STRING/STR1(10),STR2(10)

Function Assigned Value
STR1="6—-09—-99 STR1= 6——09—99
STR2=REPSTR(STR1,—-"/,1) STR2= 6/09—-99
STR2=REPSTR(STR2,—-"/,1) STR2= 6/09/99

STR2=REPSTR(STR2, 0°,”,3)

STR2= 6/9/ 99

©EDS
All Rights Reserved

GRIP Fundamentals
Student Guide

12-21

7
127
7,

Functions

Extract a portion of a Character String

Synopsis

Description

Parameters

Example

str=SUBSTR(object string’,pos,count)

Extracts a specified portion of a character string. The starting
position in the object string is specified by the value pos and the
number of characters to be extracted is specified by the value
count. If the character count exceeds the number of characters
in the object string, the substring which is returned will be the
object string.

’object string’
The literal string or string variable name of the string from
which the specified characters will be copied.

pos

Character position in the object string where the copying of
characters will begin. Spaces (blanks) are counted in arriving at
the starting position. The pos must be an integer value greater
than zero.

count

The number of consecutive characters to be copied. Spaces
(blanks) are counted in the count. The count must be an
integer value greater than zero.

This example demonstrates the use of the SUBSTR function to
copy characters from a text string.

STRING/STR1(32),STR2(32)

Function Assigned Value
STR1="THIS IS A STRING’ | STR1=THIS IS A STRING
STR2=SUBSTR(STR1,1,6) | STR2=STRING

12=-22 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Functions

Position of Characters in a String

Synopsis

Description

Parameters

Example

num=FNDSTR(object string’,’search string’,pos)

Returns the start position of a search string within an object
string. The returned value is an integer which represents the
start position of the first occurrence of the search string. The
search will be made from the position specified by pos to the
end of the object string or until the first occurrence of the
search string is found. If the search string is not found, a 0 is
returned.

’object string’
The literal string or string variable name of a string which will
be searched.

’search string’

The set of character(s) which will be searched for in the object
string.

pos

Position in the object string where the search will begin. Spaces
(blanks) will be counted in arriving at the search location. The
pos value must be an integer greater than zero.

This example demonstrates the use of the FNDSTR function to
find where the characters “83” are in a string. Only an
occurrence after the seventh character will be searched for.

STRING/STR(15)
STR="54738378332’
ANS=FNDSTR(STR,’83",7)

The variable ANS is assigned a value of 8 in the example above.
Although the first occurrence of the search string, 83, is at
position 5, it was ignored because 7 was specified as the start
search position.

©EDS GRIP Fundamentals 12=-23
All Rights Reserved Student Guide

7
127
7,

Functions

Activity: Date Conversion

] Write the code to convert the date from the format returned
by the DATE function to the following format:

DDMMM YYYY

where MMM is a three letter mnemonic for the month as
listed below:

JAN FEB MAR
APR MAY JUN
JUL AUG SEP
OCT NOV DEC
12-24 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Functions

Activity: Case Conversion (Optional)

1 Write a series of statements to convert a string of any length
from lower case to upper case.

By referring to the ASCII Conversion Chart in Appendix B,
notice the arrangement of the lower case characters and the
upper case characters in the table, along with their
corresponding ASCII values.

You will need a loop to analyze each character, to determine
whether a conversion is necessary.

©EDS GRIP Fundamentals 12=25
All Rights Reserved Student Guide

7
127
7,

Functions

12-26

GRIP Fundamentals
Student Guide

(This Page Intentionally Left Blank)

©EDS
All Rights Reserved

Unigraphics NX 2

Subroutines

Subroutines
Lesson 13

Objectives

e Decide when to use a subroutine in a GRIP program.

e Pass parameters to a subroutine.

e Use the statements for subroutines; CALL, PROC, and RETURN.

e Navigate the subroutine file organization with the GRIP search list.

©EDS
All Rights Reserved

GRIP Fundamentals
Student Guide

13-1

7/
43 ;
S

Subroutines

Subroutine Programming

A subroutine is a series of GRIP statements that perform a specific task under
the control of a main program. The subroutine has the following features:

e Subprograms can be executed as often as needed by calls from the
main program or other subprograms.

e Subprograms are separate source files that are compiled individually.
e Subprograms may call other subprograms (50 max).

e Subprograms cannot be recursive.

Subroutine have the same structure as a main program, but must contain two
statements that distinguish it from the main program. A main program cannot
contain either of these statements.

e PROC statement. This stands for "procedure’ and must be the first
statement in a subroutine. The PROC statement includes a list of
arguments shared between the subroutine and the calling program.

/,
//1/3{/; e The RETURN statement signals the end of a subroutine.

/
< To use a subroutine, a third statement is needed in the calling program to

invoke the subroutine.

e The CALL statement invokes the subprogram. This statement can be
used in the main program or in another subprogram.

Table 13—1 Subroutine Programming Statement Formats

Function Format
Call subprogram CALL/subprogram name’[,argument list]
Subroutine start PROC(][/argument list]
End of subroutine RETURN
13=2 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Subroutines

Call Statement

Synopsis

Description

Example

NOTE

CALL/subprogram name’[,argument list]

The CALL statement makes a subprogram available for use.
When the CALL statement is encountered in a program, control
of execution is transferred to the first executable statement of
the subprogram. When execution in the subprogram encounters
a RETURN statement, control is returned to the calling
program at the statement immediately following the CALL
statement. The ’subprogram name’ is the name under which the
subprogram is stored in the GRIP object library (no file
extension is needed). The name used must be a string literal;
string variables are not allowed. The “argument list” is optional
and can contain up to 25 variable names which may be any
combination of numbers, entities, strings or variables. A
variable may be either a simple variable or an array of which all
or only a portion may be passed to the subprogram. Passing
only a portion of an array, however, involves the use of the
subrange operator and may only be used on the last (right most)
variable in the list.

GRIP allows a total of 1000 labels per subroutine. A
CALL command generates one label. This label counts
against the total you can use.

The following statement, for example, is valid because the array
B is the last argument in the list.

CALL/’ SUBL' , X, Y, A, B(10. . 25)

The following statement, however, would have resulted in an
error.

CALL/’ SuBl' , X, Y, A, B(10..25),C

An alternative to using the subrange operator in a CALL
statement is to pass the entire array and the subrange bounds as
two additional arguments. However, whether a single value, an
array, or a portion of an array is passed in the argument list, the
corresponding dummy arguments in the subprogram must agree
in type, quantity, and order.

©EDS GRIP Fundamentals 13=3
All Rights Reserved Student Guide

7/
43 ;
S

7/
43 ;
S

Subroutines

Procedure Statement

Synopsis

PROC][/argument list]

The PROC statement must be the first statement in any
subprogram. The optional argument list can consist of up to 25
variable names. These are local variable names and are known
only to the subprogram where they appear. A subprogram may
contain any number of source statements and may contain any
GRIP statement.

If values are to be passed from the calling program to the
subprogram, there must be a dummy argument in the argument
list for each value or array. In addition, the dummy arguments
must be of the same type and quantity as those being passed by
the calling program.

Except for simple numerical values and constants, all dummy
arguments must be declared. Entity and number declarations
are the same as in a main program, however, only the number
parameters may be declared for string variables which are in the
argument list.

The variables in a subprogram, including those in the dummy
argument list, are considered local variables and are known only
to the subprogram. Therefore the same variable names may be
used in the main program and individual subprograms without
conflict. It should be noted, however, that it is the location in
the argument and not the variable name, that determines what
the assignment will be. For example, if the call statement
“CALL/SUB1’,X,Y,Z” was issued and the PROC statement in
the subprogram was “PROC/Z,Y,X”, the variable assignment in
the subprogram would be Z=X, Y=Y, and X=Z.

13-4

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved graphics N.

Subroutines

Example

In this example, a calling program will pass a simple numerical
variable, three elements of a numerical array, an entity, an
entity array with four elements, a string variable with a
character length of ten and a string array with ten elements and
a character length of twenty.

The calling program may appear as:

ENTI TY/ LN1, PT(4)
NUMBER/ NUM 5) , VAL1
STRI NG ABC(10) , XYZ(10, 20)

CALL/’ SUB1' , VAL, LN1, PT, ABC, XYZ, NUM 1. . 3) —

> LINE/— — — — $$ ADDI TI ONAL LI NES OF CODE

HALT
The subroutine SUB1 may appear as:
PROC/ | NDX, LN1, PERI M TI TL, XYZ, NUM

ENTI TY/ LN1, PERI M 4) -
NUMBER/ NUM 3) , | NDX
STRI NG TI TL, XYZ(10)

RETURN

Notes:

e VAL (equivalent to INDX in SUB1) is a simple numerical variable.

In the subroutine, NUM was declared as an array of three instead of
five because a subrange operator was used to pass only three numbers.
Note that it must be placed last in the argument list.

The entity variables LN1 and PT (equivalent to PERIM in SUB1)
were declared the same as they were in the calling program.

The string variable ABC (equivalent to TITL in SUB1) was declared
as containing a maximum of ten characters in the main program but
TITL must not have a size associated with it in the subroutine
declarative because it is a singular string. XYZ, however, was declared

with a length of ten because that is the number of string elements in
the XYZ array.

©EDS GRIP Fundamentals 13-5
All Rights Reserved Student Guide

/7
A3
/224

7/
43 ;
S

Subroutines

Return Statement

Synopsis

RETURN

The RETURN statement may only appear in a subprogram. A
subprogram may contain more than one RETURN statement;
however, when one is encountered control is immediately
returned to the calling program. The dummy arguments in the
subprogram will be passed to the actual arguments in the calling
program and the statement following the CALL statement in
the calling program will be executed.

13-6

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

Subroutines

Organizing Subroutines using the “gri.sea” File

Each subroutine resides in a separate source file (.grs extension)
with a corresponding object file (.gri extension). When many
GRIP programs are written, there may be many GRIP source and
object files. If all of these files are placed in the same directory,
it may become confusing to determine which files belong to each
program. It is therefore desirable to organize files in different
directories.

Object files can be linked together even if they reside in
different directories. This is accomplished by using search list.
The search list is a text file named “gri.sea” which consists of
directory specifications (full path names) where the object files
reside.

When the linker operates, it first searches for object code in the
current directory as specified in the GRADE session. If an
object file is not found, the “gri.sea” file (if one exists in the
current directory) is opened. The linker sequentially searches
for .gri files in each directory specified in “gri.sea”.

7/
43 ;
S

©EDS GRIP Fundamentals 13=7
All Rights Reserved Student Guide

Subroutines

Activity: Case Converter Subroutine

1 Write a subroutine to convert all characters in a string to
upper case or to lower case characters. Test the program by
writing a main program to prompt for a string, then convert
the string to upper case and to lower case characters. The
new strings should then be displayed on the listing window.

NOTE When developing your case_converter subroutine, prefix
your subroutine with your initials, to distinguish your
code with that of other students.

Typical call statements to the subroutine would look like the

following:
CALL/ ' xxx_case_converter’, $
str, $ String to convert
1, $ Convert to upper
7/ re $$ Return code
/
;13 / CALL/ ' xxx_case_converter’, $
S str $ String to convert
2, $ Convert to | ower
rc $$ Return code
An overall outline of the xxx_case_converter subroutine might
look like:
PROC/ $
str, $ String to convert
cnvrt_typ, $ Convert type
rc $$ Return code
STRING str
NUMBER/ cnvrt typ, rc, $
UPPER, LOWNER, SUCCESS, FATAL
DATA/ UPPER, 1, LOVER, 2, SUCCESS, 0, FATAL, -1
rc = SUCCESS
| FTHEN cnvrt _typ == UPPER
(convert str to upper case)
13—-8 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Subroutines

ELSEIF/ cnvrt_typ == LONER

(convert str to | ower case)
ELSE/

rc = FATAL $$ Invalid type
ENDI F

RETURN

7/
43 ;
S

©EDS GRIP Fundamentals 13-9
All Rights Reserved Student Guide

7/
43 ;
S

Subroutines

13-10

GRIP Fundamentals
Student Guide

(This Page Intentionally Left Blank)

©EDS
All Rights Reserved

Unigraphics NX 2

Drafting Functions

Drafting Functions
Lesson 14

Objectives

e Gain a broad understanding of the commands available to create and
edit drawings.

e Learn the commands to import part files and drawing borders.

©EDS GRIP Fundamentals 14—-1
All Rights Reserved Student Guide

Drafting Functions

The following commands control the creation, editing, and deleting of
drawings. Also included are the commands to import drawing borders on to a

drawing.
Table 14—1 Drawing Commands
Function Format
Create a Drawing DRAWC/drawing name’,| MMETER]
{height,width |n}[,IFERRlabel:]
Change Drawing Size DRAWE/[’drawing name’,]SIZE,
[{INCHES | MMETER},]{height,
width |n}[,IFERRlabel:]
Add View to a Drawing DRAWE/[’drawing name’,]ADD, view
name’ x,y[,IFERR label:]
Verify a Drawing DRAWYV/[’drawingname’,]
[{PLOT|DVSTAT,variable,} Jvariable
list[, IFERR label:]
Delete a Drawing DRAWD/drawing name
[LIFERRlabel:]
Current Drawing &CURDRW
Import a Part RPATT/filespec’[{,matrix | csys,scale}]
[,LAYER][,PLMODS,value]
[NOVIEW][,LRETCAM,number]
[,IFERR label:]
/7 Import a Part Grouped obj =RPATTG/ filespec’
14 / [{,matrix|csys,scale}][,LAYER]
2 [,PLMODS,value][,NOVIEW]
[, RETCAM,number][,IFERRlabel:]
14=2 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Drafting Functions

Drawing Overview

This section covers the GRIP statements used to produce drawings. Drawings
can be created, edited, verified, deleted, and renamed. As drawings are created,
they are automatically saved. Use the GPA & CURDRW to retrieve a specified

drawing.

Specifying Drawing
Member View Names

Must Be in Drafting
to Use Drawings

When a drawing member view name or drawing work view name is
specified, it needs to be appended with an “@?” character to denote it
as a drawing member view or drawing work view. Specification of the
view name this way is actually a short cut since the actual view name
contains an integer following the “@?” character (for drawings that
integer is zero). Optionally, you can enter the full name in order to
assure uniqueness of member view names (drawings can have more
than one instance of a given view on a single drawing).

An example of a drawing member view name that was in some way
derived from the model view, TOP, is “TOP@3”. To specify the name
of the model view, “TOP” should be used. To specify the name of the
drawing member view, either “TOP@” or “TOP@3” can be used.
The full names of all the member views for a given drawing can be
retrieved using DRAWY.

NOTE 1n Unigraphics, when the drawing view is the work view,
the layout which contains the drawing is called |DRAWING. This
layout name is read only and cannot be used to set the current layout.

When running interactive GRIP, functions that create, retrieve, or
require the presence of a drawing are only allowed in the following
modules: Gateway, Drafting, Valisys, and Genconnect. Those
functions are also available in GRIP Batch.

7/,
When drafting objects are created on a drawing in GRIP, the objects 714
associated to the drafting object (the dimensioned objects) must be ’// 77 //’

objects that are on the drawing.

©EDS GRIP Fundamentals 14=3
All Rights Reserved Student Guide

Drafting Functions

Create a Drawing

Synopsis

Description

Parameters

DRAWC/drawing name’,[MMETER,] {height,width |n}
[LIFERR,label:]

Creates a drawing of a specified name and size in the database. The
specified drawing becomes the current drawing. Once the drawing is
created, views can be added and manipulated using the Edit Drawing
statement, DRAWE.

’drawing name’

A string or string variable which represents the name of the drawing.
You must use this name to refer to the drawing for any other purpose
(e.g., editing, placing in a layout, etc.).

MMETER

Minor word which indicates that the drawing size is to be specified in
millimeters. Inches is used if this minor word is not specified.

height,width
The size of the drawing to be created. Height is measured in the
positive YC axis and width is measured in the positive XC axis. The

drawing is created with its lower left hand corner at the origin of the
WCS.

n

A valid drawing size code. The code creates the drawing in either
inches or millimeters as specified by use of the minor word
MMETER. The valid codes are as follows:

Code Size in Inches Size in Millimeters
1 Ansi A — 85x 11 ISO A0 — 841 x 1189
AnsiB — 11x 17 ISO A1 — 594 x 841
AnsiC — 17x22 ISO A2 — 420 x 594
AnsiD — 22x34 ISO A3 — 297 x 420
AnsiE — 34x44 ISO A4 — 210x 297

DN B W N

IFERR,label:

Specifies a label to which the program jumps if an error occurs in
creating the drawing.

GRIP Fundamentals ©EDS igraphics NX 2
14-4 Student Guide Al Rights Reserved Unigraphics N

Drafting Functions

Change Drawing Size

Synopsis

Description

Parameters

DRAWE/[’drawing name’,]SIZE,[{INCHES | MMETER},]
{height,width | n} [,IFERR,label:]

Changes the size of the drawing format of a drawing. Drawing units
are a parameter of the drawing. Therefore, if no unit minor word is
specified in this statement but a drawing code or size is, then the
current parameter applies.

’drawing name’

A string or string variable which represents the name of the drawing
whose drawing format size is to be changed.

SIZE
Minor word which indicates that the drawing size is to be changed.

INCHES
Minor word which indicates that the drawing size is specified in
inches.

MMETER

Minor word which indicates that the drawing size is specified in
millimeters.

height,width
The new size of the drawing format. Height is measured in the
positive YC axis and width is measured in the positive XC axis. The

drawing is created with its lower left hand corner at the origin of the
ABS.

n
A valid drawing size code. The code creates the drawing format in
either inches or millimeters as specified by use of the minor words 7///
INCHES and MMETER. 714
Code Size in Inches Size in Millimeters ///////
1 Ansi A — 85x 11 ISO A0 — 841 x 1189
2 AnsiB — 11x17 ISO A1 — 594 x 841
3 Ansi C — 17x22 ISO A2 — 420 x 594
4 AnsiD —22x34 ISO A3 — 297 x 420
5 Ansi E — 34x 44 ISO A4 — 210 x 297
IFERR,label:

Specifies a label to which the program jumps if an error occurs in
editing the drawing.

©EDS GRIP Fundamentals 14-5
All Rights Reserved Student Guide

Drafting Functions

Add View to Drawing
Synopsis DRAWE/[’drawing name’,]ADD,’view name’,x,y
[LIFERR,label:]

Description Adds an existing view to a previously created drawing at the specified
coordinates.

Parameters ’drawing name’
A string or string variable which represents the name of the drawing
to which the view is added.
ADD
Minor word which indicates that a view is to be added to a drawing.
’view name’
A string or string variable which represents the name of the view to be
added. The view must not already be on the drawing and must not be
a drawing.
X,y
The coordinates which define the drawing reference point and are
used to place the view in the drawing. The coordinates are measured
from the lower left hand corner of the drawing to the view reference
point of the view being added.
IFERR,label:
Specifies a label to which the program jumps if an error occurs in
editing the drawing.

14—6 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Drafting Functions

Verify a Drawing

Synopsis

Description

DRAWYV/[’drawing name’,] [{PLOT | DVSTAT,variable,}]
variable list[,IFERR,label:]

Returns the parameters of the specified drawing to a series of
variables. Some of the variables in the list must be declared as arrays.
The parameter returned depends upon its field position in the list.
Therefore, if certain parameters are not desired, the field must be
defined using two commas (,,). However, once you have specified the
last desired parameter, do not use commas to define the remaining
positions. For example, if you wished to only verify the name of each
member view and the number of member views, you would specity

DRAWV/VNAM, NUMVWIFERR,label:

where VNAM is the member view name; ,, represents the omitted
reference coordinates parameter, and NUMVW represents the
number of member views.

You can verify either plot or non-plot information. This is determined
by the minor word PLOT. If verifying non-plot information (by
omitting the minor word PLOT), you can also return the status of
each view in addition to the regular list of data. This is done by
specifying the minor word DVSTAT followed by a numerical array.

NOTE You cannot specify both PLOT and DVSTAT in the same
statement.

If you do not specify the minor word PLOT, the following regular list
of data is returned to a variable list:

77
4 47
Position | Parameter Data Type / /
. . L
1 Name of each member view String array
2 Reference point (x,y) of each member Num. array
view in drawing coordinates
3 Number of member views Number
4 Drawing units [1,2]
Inches 1
Millimeters 2
5 Drawing height Number
6 Drawing width Number
©EDS GRIP Fundamentals 14=7

All Rights Reserved Student Guide

Drafting Functions

Parameters

If you specify the minor word PLOT, the following plot information is
returned to a variable list:

Position | Parameter Data Type
1 Plotter name String
Variable
2 Scale Number
3 Rotation angle Number
4 Media reference number Number
5 Number of copies Number
6 X coordinate of plot origin (in drawing Number
coordinates)
7 Y coordinate of plot origin (in drawing Number
coordinates)
8 X offset value from the plotter origin Number
9 Y offset value from the plotter origin Number
10 Pen assignment [1,2]
By density 1
By color 2
11-25 Pen list Number

’drawing name’

A string or string variable which represents the name of the drawing
being accessed. If no name is specified, the current drawing is
accessed. If no drawing name is specified and there is no current
drawing, an error occurs.

PLOT

Minor word which indicates that the plotting parameters of the
drawing are to be returned to the variable list.

DVSTAT

Minor word which indicates that the status (reference or active) of
each view on the drawing is to be returned.

variable

A numerical array which receives the status of each view in the
drawing when the minor word DVSTAT is specified. The view status is
returned in the same order as the view names which can be extracted
in this and other DRAWY statements.

14-8

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

Drafting Functions

Example

Declarations

The values returned are:
0 for a Reference View

1 for an Active View

variable list

A list of variables to which either plot or non-plot parameters are
assigned. Some of the variables in the list must be declared as arrays.
Specitying the minor word PLOT returns plot information to this list.
Omitting PLOT returns non-plot data.

IFERR,label:

Specifies a label to which program execution jumps if an error occurs
while the drawing is being accessed.

This example demonstrates the use of the Verify Drawing statement
DRAWV to return the parameters of a drawing.

NUMBER/REF(10,2),SIZE(2)
STRING/VW(10,30)
DRAWC/DRAW1’ 4, WORK,IFERR,L10:
DRAWE/ADD, FRONT’,2,3

DRAWE/ADD, TOP’,2,8

DRAWE/ADD, TFR-ISO’,8,6
DRAWV/VW,REF,NUM1,SIZE,IFERR,L.20:
L10:MESSG/CANNOT CREATE DRAWING’
L.20:MESSG/'CANNOT VERIFY DRAWING’

The number variables do not need to be declared; however, the string
array which holds the view names and the numerical array which

holds the reference point locations must be declared. The variables z/"///
are assigned values as follows: y g
v

©EDS GRIP Fundamentals 14—9
All Rights Reserved Student Guide

Drafting Functions

Variable Value Assigned
VW(1) FRONT
VW(2) TOP
VW(@3) TFR-ISO

REF(1,1) 2

REF(1,2) 3

REF(2,1) 2

REF(2,2) 8

REF(3,1) 8

REF(3,2) 6
NUMI1 1

SIZE(1) 22

SIZE(2) 34

The number of member views was not required; therefore, the field
(third field) was left blank by using back to back commas ().

NOTE The DRAWE and DRAWY statements do not use the

drawing name because the drawing is active in the current work view.

GRIP Fundamentals
14-10 Student Guide

©EDS
All Rights Reserved

Unigraphics NX 2

Drafting Functions

Delete a Drawing

Synopsis

Description

Parameters

DRAWD/drawing name’[,IFERRlabel:]

Deletes the specified drawing.

’drawing name’

A string or string variable representing the name of a drawing to
delete.

IFERR,label:

Specifies a label to which the program jumps if an error occurs.
Possible errors include: invalid drawing name; drawing does not exist;
cannot delete current drawing; cannot delete drawing (it is the work
view); is only view in canned layout.

©EDS GRIP Fundamentals 14-11
All Rights Reserved Student Guide

Drafting Functions

Current Drawing

Synopsis &CURDRW

Description Reads the name of the current drawing or retrieves a specified
drawing, as follows.

To retrieve a drawing: &CURDRW = ’drawing name’
To return current drawing name: MYNAME = &CURDRW

Characteristics Read/Write String 30 Characters
72
14
v
14—12 GRIP Fundamentals ©EDS Un igraph ics NX 2

Student Guide All Rights Reserved

Drafting Functions

Import an Existing Part

Synopsis

Description

Parameters

RPATT/filespec’[{,matrix | csys,scale}] [,LAYER]
[LPLMODS,value] [, NOVIEW] [, RETCAM,number]
LIFERRlabel:]

Imports an existing part file from the specified directory into the
currently displayed part. This statement is not object-valued
and does not import the part as a group. For importing grouped
parts, use the RPATTG statement.

filespec’

The filespec parameter contains the file specification data for
the file to be imported.

matrix

A previously defined matrix which determines the location and
orientation (or orientation and scale) of the part being
imported.

csys,scale

A previously defined coordinate system and a scale factor which
determine the orientation and scale of the part being imported.
The scale factor must be a positive value.

LAYER

Minor word which causes the part to be imported onto the same

layers as when it was created. Z/‘l///
/ /

PLMODS ///////

Minor word which indicates that a parts list parameter will be
specified.

value

Integer between 1 and 4 inclusive which specifies how the
system will handle parts list data associated with the part being
imported. These values are as follows:

¢ Indicates that no parts list information will be imported.
This is the default.

©EDS GRIP Fundamentals 14—13
All Rights Reserved Student Guide

Drafting Functions

NOTE

e Indicates that the default parts list format data will be
imported. When this happens, the default data replaces
the parts list format data of the current part.

e Indicates that the imported part will be added to the
parts list as a single group (one-object entry).

e Indicates that all parts list entries on the imported part
will be added individually to the parts list data of the
current part. The parts list format data will also be
imported.

NOVIEW

Minor word which indicates that no views are imported when
the part is imported. The geometry is imported into the existing
views based on the current model mode (MODEL or VIEW
DEPENDENT). If NOVIEW is omitted, the views in the part
being imported are also imported.

RETCAM

Minor word which controls how manufacturing data (tools,
parameter sets, and operations) is handled.

number

Integer between 1 and 3 inclusive which specifies how the
system will handle duplicate manufacturing object names in
both the current and the imported part. These values are as
follows:

e Indicates that no manufacturing data will be imported.
This is the default.

¢ Indicates that the operation will terminate and no objects
will be imported when duplicate manufacturing names
occur.

¢ Indicates that the operation will continue and duplicate
manufacturing objects will be renamed when duplicate
manufacturing names occur.

IFERRlabel:

The IFERR parameter specifies a label to which the program
will jump if an error occurs.

If a non-orthogonal matrix is used to transform a part

containing arcs, conics, drafting objects or dimensions,
the error message CANNOT TRANSFORM displays.

14-14

GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Drafting Functions

Example This example demonstrates the use of the RPATT statement to
import a previously created part into the current part. The part
is imported through a matrix to place its origin at 1,1.

Declarations NUMBER/M(12)
Matrix Definition M = MATRIX/TRANSL,1,1,0
Import Part RPATT/STAR’,M

PART 'STAR’

WRT
ORIGIN
/\/—RETRIEVED
POSITION
1.0000 |YC L

l XC,
—=| 1.0000 [~—

Figure 14—1 Part imported using the RPATT statement

©EDS GRIP Fundamentals 14—15
All Rights Reserved Student Guide

Drafting Functions

Import an Existing Part Grouped

Synopsis

Description

Parameters

obj = RPATTG/ filespec’[{,matrix | csys,scale}] [, LAYER]
[LPLMODS,value] [NOVIEW] [, RETCAM,number]
[LIFERR,label:]

Imports an existing part file into the currently displayed part as
a group. This statement is referred to as an object-valued
function because the resulting group is a singular object which
may be assigned to a previously declared object variable. In
addition, the group automatically assumes the filename portion
of the filespec parameter as its object name.

filespec’

The filespec parameter contains the file specification data for
the file to be imported.

matrix

A previously defined matrix which determines the location and
orientation (or orientation and scale) of the part being
imported.

csys,scale

A previously defined coordinate system and a scale factor which
determine the orientation and scale of the part being imported.
The scale factor must be a positive value.

LAYER

Minor word that causes the part to be imported onto the same
layers as when it was created.

PLMODS

Minor word which indicates that a parts list parameter will be
specified.

value

Integer between 1 and 4 inclusive which specifies how the
system will handle parts list data associated with the part being
imported. These values are as follows:

1. Indicated that no parts list information will be
imported. This is the default.

GRIP Fundamentals ©EDS Unieraphics NX 2
14-16 Student Guide All Rights Reserved 8rap

Drafting Functions

2. Indicates that the default parts list format data will be
imported. When this happens, the default data
replaces the parts list format data of the current part.

3. Indicates that the imported part will be added to the
parts list as a single group (one—object entry).

4. Indicates that all parts list entries on the imported
part will be added individually to the parts list data of
the current part. The parts list format data will also
be imported.

NOVIEW

Minor word which indicates that no views are imported when
the part is imported. The geometry is imported into the existing
views based on the current model mode (MODEL or VIEW
DEPENDENT). If NOVIEW is omitted, the views in the part
being imported are also imported.

RETCAM

Minor word which controls how manufacturing data (tools,
parameter sets, and operations) is handled.

number

Integer between 1 and 3 inclusive which specifies how the
system will handle duplicate manufacturing object names in
both the current and the imported part. These values are as
follows:

e Indicates that no manufacturing data will be imported.
This is the default.

e Indicates that the operation will terminate and no objects 7///
will be imported when duplicate manufacturing names 714

occur. //// ///

¢ Indicates that the operation will continue and duplicate
manufacturing objects will be renamed when duplicate
manufacturing names occur.

IFERR label:

The IFERR parameter specifies a label to which the program
will jJump if an error occurs.

©EDS GRIP Fundamentals 14—17
All Rights Reserved Student Guide

Drafting Functions

Example This example demonstrates the use of the RPATTG statement to
import a previously created part into the current part as a
group. The part is imported through a matrix to place its origin
at 1,1.

Declarations ENTITY/G
NUMBER/M(12)

Matrix Definition ~ M = MATRIX/TRANSL,1,1,0
Assemblies G=RPATTG/STAR’M

PART "STAR' MERGED PART 1S

GROUP CALLED "G"

ART
OF\'lGlN

RETR IEVED
POS ITION

AN

1.0000 |YC L

XC,
—={ 1.0000 |=—

NOTE The merged part is a group whose object attribute name
is “STAR”. The group object identifier is known by the
variable named “G” in this program segment.

/,
/777
; 14~ Figure 14—2 Part imported using the RPATTG statement
v
14—18 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Drafting Functions

Activity: Drawing Creation

Write a program to allow the user to select a drawing size from a menu, create a
drawing with the selected size, and import a drawing border.

1 Use the CHOOSE/ statement to create the following
menu:

Cue: Select Drawing Size
B-Size
C-Size
D-Size

1 Use the DRAWC/ statement to create a drawing called
“SHEET1”. The size of the drawing will depend on the
menu option selected.

1 Use the RPATTG statement to import a border.

1 Depending on the option selected, import one of the
following parts.

gr p_border _b. prt
grp_border _c. prt
gr p_border _d. prt

©EDS GRIP Fundamentals 14—19
All Rights Reserved Student Guide

Drafting Functions

14-20

GRIP Fundamentals
Student Guide

(This Page Intentionally Left Blank)

©EDS
All Rights Reserved

Unigraphics NX 2

Dimensions and Drafting Aids

Dimensions and Drafting Aids
Lesson 15

Objectives

e (ain a broad understanding of the commands available to add
dimensions, notes, and labels.

e Recognize the GPA's and EDA’s that are useful when working with
dimensions and drafting aids.

7
; 157
Y,

©EDS GRIP Fundamentals 15—-1
All Rights Reserved Student Guide

7
; 157
Y,

Dimensions and Drafting Aids

Dimensions

There are statements available to help you with a number of dimensioning
functions, including the creation of linear dimensions, angular dimensions, and
diameter dimensions.

Many of the commands in this lesson contain arguments which can be
expressed in several ways.

1. When you see the word “(origin)”, you may replace it with one of the
following formats:

15-2

GRIP Fundamentals
Student Guide

X,Y coordinates

The X and Y coordinates of a position in the current work
plane.

NOTE/ 5,5, THHS I S A NOTE

Point

In a previously defined Point only the X and Y coordinate
are used.

P1 = POINT/5,5
NOTE/P1,;THIS IS A NOTFE’

Delta Distance

The delta format positions the new text a delta distance from
a previously defined point or from a text origin of a
previously defined note or dimension.

P1 = PO NT/5,5
NOTE/ DELTA, P1,2,1," THHS I S A NOTE

Delta Character Size

The delta character size positions the text to offset distance
in multiples of the current character size from a previously
defined point or origin of a drafting object.

P1 = PO NT/5,5
&CS| ZE=. 25
NOTE/ DELCH, P1, 4,8, "THIS I S A NOTE

©EDS J ics NX 2
All Rights Reserved Unigraphics N.

Dimensions and Drafting Aids

2. 'When you see the argument “arc position”, replace it with one of the
following words:

ENDOF This refers to an end point of the arc.
CENTER This refers to the center of the arc.

TANTO This refers to the tangency of the arc on
the side specified by the positional modifier.

3. When you see the argument “dim text”, replace it with one of the
following choices:

DIVIDE, number

This feature takes the dimension of the
selected objects, divides it by the number
entered and uses the result as text for the
dimension.

’dimension text’

You will use this when you are showing
dimensions which are different from the
actual size of the drawing. The actual
dimension is ignored and the data you enter
is used for the dimension. The text field may
contain a maximum of 132 characters.
Although the maximum length for a single
string is 78 characters long, you may
concatenate strings by using the “+” sign.

4. When you see the argument “app text”, replace it with the following:
APPEND,text[,text]...

This feature allows you to append up to 200
characters of text to a dimension. When you
separate two strings by a comma instead of a
“+7 sign, the string following the comma is
put on a new line in the dimension.

7
; 157
Y,

©EDS GRIP Fundamentals 15=3
All Rights Reserved Student Guide

Dimensions and Drafting Aids

5. When you see the words “OBLIQ,angle”, you may replace it with the
following:

OBLIQ,angle

This option lets you angle extension lines as
indicated. The lines will rotate around the
end of the extension line which is attached to
the object. A positive angle will result in a
counterclockwise rotation of the extension
lines. A negative angle will result in a
clockwise rotation.

8.00

Figure 15—1 Dimension with Oblique Angular of 45 degrees

7
; 157
Y,

GRIP Fundamentals ©EDS igraphics NX 2
15-4 Student Guide Al Rights Reserved Unigraphics N

Dimensions and Drafting Aids

Creating Drafting Objects on Drawings

In GRIP, you can place dimensions and drafting aids on a drawing in either of
two ways.

e Create the drafting objects in a view within the modeling
display, and then move the view to the drawing. This causes the
drafting objects to get moved to the drawing.

o Create the objects directly on the drawing itself.

Each of these methods is described below:

Creating Drafting If a drawing is active, and you wish to create the drafting objects
Objects in a View in a view (within the modeling display), follow the steps listed
below:
1. Go to the modeling display using &DSTATE=1.
2. Create drafting objects in the modeling display.
3. Go back to the drawing using &DSTATE=2.
4. Place the view on the drawing using

DRAWE/ADD. This causes the drafting objects to
move to the drawing.

NOTE Objects created on the drawing (e.g., curves) may be
referenced directly on the drawing.

gzeqting Drc;lfting If a drawing is active, and you wish to create the drafting objects
jects on the ; 1 h ine itself ST h b
Drinwing ltself directly on the drawing itself, you must specify in what member

view the object is to be referenced. This information must be
input to the GRIP command, by adding the optional minor word
VIEW with the view name after the object id in the GRIP
statement. If the referenced object is on the drawing itself, then
the drawing view name should be used. If a drawing is active
and no view name is input, then the system defaults to the
drawing view.

Note, that an error is reported if the view specified does not
exist in the current drawing or if the object does not exist in that

view (i.e. the object is view dependent in another view). ,/12 //,
/ ’
/
7,
©EDS GRIP Fundamentals 15-5

All Rights Reserved Student Guide

Dimensions and Drafting Aids

The following are some useful tips:

e When using screen positions (the POS/ command) to place
dimensions on drawings, you must remember to map the
position from the view to the drawing. See the MAP/ command
for this information.

e You can use the &VWSEL GPA to get information on which
view a selection was made or a position was specified.

¢ You should use &VWCURS to set the view of the cursor based
on what operation the program is performing. The view should
be = &ANY during object selection and = &WORK while
specifying positions. These screen positions are to be used as
object origins.

7
; 157
Y,

GRIP Fundamentals ©EDS Unigraphics NX 2
15-6 Student Guide Al Rights Reserved grap

Dimensions and Drafting Aids

Table 15-1 Dimensioning Commands

Function Format *

Horizontal LDIM/{HORIZ| VERT},(origin),

and Vertical [{ENDOF |CENTER |TANTO},]
“PMOD3”,0bjl,

[VIEW, View Name’,]
[{ENDOF|CENTER | TANTO},]
“PMOD3”,0bj2[, VIEW, View Name’]
[, Dim. text][,APPEND,App. text]
[,OBLIQ, Angle]

Angular ADIM/[MAJOR,](origin),“PMOD3” linel,
[VIEW,View Name’,]“PMOD?3” line2
[,VIEW,View Name’|

[, Dim. text][,APPEND,App. text]

Radius RDIM/(origin),arc[,VIEW, View Name’]
,[Dim. text][,APPEND,App. text]

%

(origin) is {X,Y or point or DELTA, {point or dimen },dx,dy}
“PMOD?2” is {XSMALL or YSMALL or XLARGE or

YLARGE}
;/////
/ 15
ALY,
©EDS GRIP Fundamentals 15=7

All Rights Reserved Student Guide

7
; 157
Y,

Dimensions and Drafting Aids

Horizontal and Vertical Dimensions

Synopsis

Description

Parameters

obj = LDIM/{HORIZ|VERT},(origin),
[{ENDOF | CENTER | TANTO},]“PMOD3”,0bjl,
[VIEW,View Name’,] [{ENDOF | CENTER | TANTO},]
“PMOD3”,0bj2[,VIEW,View Name’]
[,Dim. text] [, APPEND,App. text] [,OBLIQ, Angle]

Creates a horizontal or vertical dimension based on which minor
word is specified between two previously defined objects.
Positional modifiers are used for each object to specify which
end of the object should be dimensioned.

You may also override the dimension text by placing a string in
the proper field. Text may be appended to the dimension. The
placement of the appended text may be controlled by the global
parameter &APSITE.

The extension lines of the dimension may be created at an angle
measured by specifying an oblique angle.

HORIZ

Minor word which indicates that the desired dimension is the
horizontal distance between two objects.

VERT

Minor word which indicates that the desired dimension is the
vertical distance between two objects.

(origin)
The dimensional text location. See the beginning of this section
for the methods of specification.

ENDOF

Minor word which indicates that the extension line will
terminate at one end of the arc if the specified object is an arc.
The end to be considered will be further determined by a
positional modifier (PMOD?3).

CENTER

Minor word which indicates that the extension line will
terminate at the center of the arc if the specified object is an
arc. For this option the positional modifier (PMOD3) is omitted.

15-8

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

Dimensions and Drafting Aids

TANTO

Minor word which indicates that the extension line will
terminate at one of the arc tangents if the specified object is an
arc. The tangent to be considered will be further determined by
a positional modifier (PMOD3).

PMOD3

Determines which end of the object or position on the arc is to
be dimensioned. If you are dimensioning points or arc centers,
you can omit the positional modifier. For all other objects, the
positional modifier must be present.

obj1,0bj2
The two existing objects between which the horizontal or
vertical dimension will be created.

VIEW
Minor word that indicates that a view name is to follow.

’View Name’
This is a string variable or literal that is the view name.

Dim. text

A string of up to 50 characters you may enter if the system
generated value and text are not desirable. You can enter the
desired dimension and/or text between single quotes
(’dimension text’), or you can use a previously declared string
variable.

APPEND

Minor word which indicates that the text in the next field should
be appended to the dimension text.

App text

Text string which will be appended to the dimension text
(APPEND,’string’,’string’...). Each string constitutes a new line
and may contain a maximum of 132 characters. The maximum
number of characters which may be appended to a dimension is
600. The placement of appended text is controlled by the global
parameter &APSITE.

OBLIQ ;//////

Minor word which indicates that the extension lines willbe ata 4 15/

specified angle to their normal orientation. /Y,
©EDS GRIP Fundamentals 15—9

All Rights Reserved Student Guide

Dimensions and Drafting Aids

Angle

The angle, in degrees, at which the extension lines will be
rotated from their normal orientation. The rotation will be
about the end of the line near the object. A positive angle
generates a counterclockwise rotation, and a negative angle
generates a clockwise rotation.

Example This example demonstrates the creation of a horizontal and a
vertical dimension between previously defined points. The text
DIM1 and DIM2 is appended to the dimension text.

Declarations ENTITY/PTO,PT1,PT2,DIM1,DIM2

Geometry Definition PT0 =POINT/0,0
PT1 =POINT/-1,0
PT2 =POINT/.5,—1

Dimension DefinitionDIM1=LDIM/HORIZ,—-.5,1,PT1,PTO,APPEND, DIM1’
DIM2=LDIM/VERT,1,-.5,PT0,PT2,APPEND,DIM?2’

=— 1.0000 —=
DIMI1

Zp'r 1 PTO 1 .0000

DIM2

Z PT2

Figure 15—-2 Horizontal and vertical dimensions

7
; 157
Y,

GRIP Fundamentals ©EDS Unieraphics NX 2
15-10 Student Guide All Rights Reserved 8rap

Dimensions and Drafting Aids

Angular Dimensions
Synopsis obj = ADIM/[MAJOR,] (origin),“PMOD3” linel,

Description

Parameters

[VIEW,View Name’,]“PMOD3”,line2
[,LVIEW,View Name’]
[,Dim. text] [, APPEND,App. text]

Creates an angular dimension between two previously defined
lines. The minor angle is measured and displayed in the work
coordinate system counterclockwise from the end of the first
line to the end of the second line.

If you specify the minor word MAJOR, the opposite portion of
the angle (360 minus minor) is dimensioned. Since the default
is the minor portion, you do not need to use the minor word
MINOR.

MAJOR

An optional minor word which indicates that the major angle
between the two lines is to be dimensioned. If omitted, the
default is to the minor angle.

(origin)
The dimensional text location. See the beginning of this section
for the methods of specification.

PMOD3
Determines which end of the line is to be dimensioned.

linel,line2
The two existing lines to be dimensioned.

VIEW
Minor word that indicates that a view name is to follow.

’View Name’
This is a string variable or literal that is the view name.

Dim. text

A string of up to 50 characters you may enter if the system
generated value and text are not desirable. You can enter the

desired dimension and/or text between single quotes ,/1/ /’,

(’dimension text’), or you can use a previously declared string y 97

variable. /Y
©EDS GRIP Fundamentals 15—-11

All Rights Reserved Student Guide

7
; 157
Y,

Dimensions and Drafting Aids

Example

Declarations

APPEND

Minor word which indicates that the text in the next field should
be appended to the dimension text.

App text

Text string which will be appended to the dimension text
(APPEND,’string’,’string’...). Each string constitutes a new line
and may contain a maximum of 132 characters. The maximum
number of characters which may be appended to a dimension is
600. The placement of appended text is controlled by the global
parameter &APSITE.

This example demonstrates the creation of several angular
dimensions between two previously defined lines. The objects
used in the angular dimension must be lines. The major and
minor dimensions have been created.

ENTITY/LN1,LN2,DIM(4)

Geometry Definition 1L.N1 =LINE/0,0,.5,.5

LN2 =LINE/0,0,.5,—-.5

Dimension DefinitionDIM(1) =ADIM/.5,1.3, XLARGE,LN1,XLARGE,LN2,$

APPEND, DIM(1)

DIM(2) =ADIM/2.2,21,XLARGE,LN1, XLARGE,LN2,$
"MINOR’,APPEND,’ANGLE’,'DIM(2)’

DIM(3) =ADIM/MAJOR,—.05,.15 XLARGE,LN1,$
XLARGE,LN2, APPEND, DIM(3)’

DIM(4) =ADIM/MAJOR,—1.8,21,XLARGE,LN1,$
XLARGE,LN2’MAJOR’, APPEND,’ANGLE’, DIM(4)’

MAJOR 270°0" 90°0" MINOR
ANGLE ANGLE
DIM(4) DIM(3) DIM(1) DIM(2)

Figure 15—-3 MAJOR and MINOR angular dimensions

15—12 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Dimensions and Drafting Aids

Radius Dimensions

Synopsis

Description

Parameters

obj = RDIM/(origin),arc[,VIEW,View Name’] [,Dim. text]
[LAPPEND,App. text]

Creates a radius dimension by specifying a previously defined
arc.

(origin)
The dimensional text location. See the beginning of this section
for the methods of specification.

arc
The existing arc to be dimensioned.

VIEW
Minor word that indicates that a view name is to follow.

’View Name’
This is a string variable or literal that is the view name.

Dim. text

A string of up to 50 characters you may enter if the system
generated value and text are not desirable. You can enter the
desired dimension and/or text between single quotes
(’dimension text’), or you can use a previously declared string
variable.

APPEND

Minor word which indicates that the text in the next field should
be appended to the dimension text.

App text

Text string which will be appended to the dimension text
(APPEND,’string’,’string’...). Each string constitutes a new line

and may contain a maximum of 132 characters. The maximum

number of characters which may be appended to a dimension is ////
600. The placement of appended text is controlled by the global 715 7
parameter &APSITE. 7./

©EDS GRIP Fundamentals 15—-13
All Rights Reserved Student Guide

7
; 157
Y,

Dimensions and Drafting Aids

Example This example demonstrates the creation of the radius dimension
of a previously defined arc.
Declarations ENTITY/CR1,DIM1

Geometry Definition CR1=CIRCLE/0,0,1,START,0,END,270
&ENSITE=&TOPR

Dimension DefinitionDIM1 =RDIM/-1.1,.75,CR1,APPEND, DIMT’

CR1
1.0000
RAD
DIM1
Figure 15—4 Arc radius dimension
15—14 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Dimensions and Drafting Aids

Dimension Statements

The following pages provide detailed information on the GRIP statements used
to create the objects which are defined in Unigraphics using the Dimension
Creation option. The statements are grouped to mimic Unigraphics to help you
find the specific statement you want as quickly as possible.

Since all of the dimensioning statements require you to specify an origin
parameter and since the origin parameter has several options, this parameter
will be covered now, collectively, rather than with each individual statement.

The GRIP words listed below are described on the following pages. The listing
below reflects the order in which these words appear in the following pages, not
alphabetical order.

GPAs and
Constants Major Words Minor Words

&TXARR LDIM HORIZ
&AUTO ADIM VERT
&ARRIN RDIM ENDOF
&ARROUT CENTER

&ENSITE TANTO
&TOPL OBLIQ
&TOPC MAJOR
&TOPR APPEND
&MIDL
&MIDC
&MIDR
&BOTL
&BOTC
&BOTR

&XLINE
&BOTH
&FIRST
&SECOND
&NONE
&APSITE

&LEFT ,
&RIGHT 7

;15?
Y,

©EDS GRIP Fundamentals 15—-15
All Rights Reserved Student Guide

7
; 157
Y,

Dimensions and Drafting Aids

The GRIP drafting and dimensioning functions allow you to create drafting
objects (such as notes and labels), create dimensions, and control the drafting
and dimension parameters. The following tables list and define drafting
parameters, dimensioning commands, and drafting symbols which are
presented in this lesson.

15-16

Table 15-2 Drafting Parameters

Parameter GPAs and Constants

Text and arrow location &TXARR RW N [1..3]
Automatic &AUTO C N =
Manual loc., arrows in =~ &ARRIN C N =
Manual loc., arrows out &ARROUTC N =

Character size &CSIZE RW N GTO

Places past the decimal &DECPL RW N [0..9]

for numerical displays

Dimension places past &DDECPL RW N [0..7]

the decimal

Fraction display type &FTYPE RW N [1..4]
Decimal &DECIM C N =
2/3 size common &FRAC C N =
3/4 size common &TQFRAC C N =
Full size common &FSFRAC C N =4

Extension line display &XLINE RW N [1..4]
Both lines &BOTH C N =
First line only &FIRST C N =
Second line only &SECOND C N =3
No ext. lines &NONE C N =4

Entity site related to text &ENSITE RW N [1..9]
Top Left &TOPL C N =
Top Center &TOPC C N =
Top Right &TOPR C N =3
Mid—left &MIDL C N =4
Mid—center &MIDC C N =
Mid —right &MIDR C N =6
Bottom Left &BOTL C N =7
Bottom Center &BOTC C N =8
Bottom Right &BOTR C N =9

©EDS Unigraphics NX 2

GRIP Fundamentals
Student Guide

All Rights Reserved

Dimensions and Drafting Aids

Name

Synopsis

Description

Characteristics

&CSIZE Character Size
&CSIZE

Controls the size of all text characters.

There are individual text preferences for dimension main text,
appended text, tolerance text and drafting aid text. The Write option
for this GPA sets all of these preferences. The Read option can only
return one of these preferences. It returns the last preference that
was modified. For example, if the DIMPAR command is used to set
the preferences from a Note, then the GPA returns the text
preferences for drafting aid text. If the DIMPAR command is used to
set the preferences from a dimension, then the GPA returns the text
preferences for dimension main text.

Read/Write Number Greater Than Zero

7
; 157
Y,

©EDS GRIP Fundamentals 15—-17
All Rights Reserved Student Guide

7
; 157
Y,

Dimensions and Drafting Aids

Extension Line Display

Synopsis

Description

Characteristics

Constant Values

Parameters

&XLINE

Controls the display of the extension lines for all dimensions.

Read/Write ~ Number [1..4]

&BOTH
&FIRST
&SECOND
&NONE

LN -
o n

&BOTH
GPA which indicates that both extension lines will be displayed.

&FIRST

GPA which indicates that only the first extension line will be
displayed.

&SECOND

GPA which indicates that only the second extension line will be
displayed.

&NONE

GPA which indicates that neither extension line will be
displayed.

GRIP Fundamentals ©EDS igraphics NX 2
15-18 Student Guide Al Rights Reserved Unigraphics N

Dimensions and Drafting Aids

Text and Arrow Location

Synopsis

Description

Characteristics

Constant Values

Parameters

&TXARR

Controls the text and arrow location parameter. In
Unigraphics, text and arrow location also allows you to enter
dimension text manually. Entering dimension text manually in
GRIP is controlled in the dimension statements themselves, so
this GPA controls only text and arrow location.

Read/Write ~ Number [1..3]

1= &AUTO
2 = &ARRIN
3 = &ARROUT

&AUTO

GPA which indicates that the text and arrows will be placed
automatically, as they fit between the extension lines, in the
following order:

Text centered between the extension lines with the arrows
inside.

Text centered between the extension lines with the arrows
outside.

Text placed outside the extension lines with the arrows
inside.

Text and arrows placed outside the extension lines.

&ARRIN

GPA which indicates that the text will not be automatically
centered between the extension lines. Its location is determined
by the origin parameter in the dimension statement. The arrows
are placed inside the extension lines.

&ARROUT

GPA which indicates that the text will not be automatically ,
centered between the extension lines. Its location is determined ,/1/ /’,
by the origin parameter in the Dimension Statement. The y 37
arrows are placed outside the extension lines. /Y

©EDS GRIP Fundamentals 15—19
All Rights Reserved Student Guide

Dimensions and Drafting Aids

Entity Site related to Text

Synopsis

Description

Characteristics

Constant Values

Parameters

7
; 157
Y,

&ENSITE

Controls the location of the point used to place a drafting object
in relation to its text.

Read/Write ~ Number [1..9]

&TOPL
&TOPC
&TOPR
&MIDL
&MIDC
&MIDR
&BOTL
&BOTC
&BOTR

OO0~ NP W -

&TOPL

GPA which indicates that the point used to locate text will be at
the top left corner of an imaginary box containing the text.

&TOPC

GPA which indicates that the point used to locate text will be at
the center of the top edge of an imaginary box containing the
text.

&TOPR

GPA which indicates that the point used to locate text will be at
the top right corner of an imaginary box containing the text.

&MIDL

GPA which indicates that the point used to locate text will be at
the mid-point of the left edge of an imaginary box containing
the text.

&MIDC

GPA which indicates that the point used to locate text will be in
the center of an imaginary box containing the text.

GRIP Fundamentals ©EDS Unieraphics NX 2
15-20 Student Guide All Rights Reserved 8rap

Dimensions and Drafting Aids

&MIDR

GPA which indicates that the point used to locate text will be at
the mid-point of the right edge of an imaginary box containing
the text.

&BOTL

GPA which indicates that the point used to locate text will be at
the bottom left corner of an imaginary box containing the text.

&BOTC

GPA which indicates that the point used to locate text will be at
the center of the bottom edge of an imaginary box containing
the text.

&BOTR

GPA which indicates that the point used to locate text will be at
the bottom right corner of an imaginary box containing the text.

©EDS GRIP Fundamentals 15=21
All Rights Reserved Student Guide

7
; 157
Y,

Dimensions and Drafting Aids

Drafting Aids

The GRIP statements, which are described in this lesson, are used to create the
objects which are defined in Unigraphics using the Drafting Aids option.

There are two sections in this lesson which are not based on a specific GRIP
statement. These are text control, and drafting and dimensioning symbols which
deal with the manipulation of text using special control characters.

Table 15-3

Dimensioning Commands

Function

Format *

Note

Label

Linear
Centerline

NOTE/(origin),{scratch file #1
[,IFERR label:] | text’[, text’]+ }

LABEL/[{LEFT|RIGHT},](origin),
{obj[, VIEW, View Name’]
[,(origin)]| (origin) } text’[, text’] +

CLINE/LINEAR,obj list[, VIEW,view name list]

15-22

GRIP Fundamentals
Student Guide

©EDS 1 1
All Rights Reserved Unigraphics NX 2

Dimensions and Drafting Aids

Note

Synopsis

Description

Parameters

obj = NOTE/(origin),
{scratch file #1[,IFERR,label:] | ’text’[,’text’] + }

Creates a note by specifying the text origin and either a text
string or scratch file 1. If you specify scratch file 1, the
statement will read whatever text it finds into the note.

You may also specify and IFERR label to jump to, if the NOTE
statement cannot read scratch file 1.

(origin)
The text location. See the beginning of this section for the
methods of specification.

scratch file #1

The text which exists in scratch file number one may be used for
the note. Each line of text in this file will be on a separate line
in the note.

IFERR label:

If scratch file number one is used for the text, the optional
IFERR parameters may be used. This feature provides the
capability of branching to another statement, specified by
(LABEL:), in the program if an error occurs in reading the
scratch file.

’text’,’text’

The ’text’ parameters may be either text between single quotes
or string variables. In either case, each text parameter is placed
on a new line. As many lines as desired may be included in the
note when using a scratch file. Because of downstream
application limits, notes should not exceed 132 characters per
line or more than 600 characters per note. This includes special
control characters used to generate GD&T symbols, diameter
symbols, etc. If you create text with these symbols, you must

include the special control characters in the total character S
count.. 715
/
7/
©EDS GRIP Fundamentals 15=23

All Rights Reserved Student Guide

Dimensions and Drafting Aids

Example This example demonstrates the creation of a note by specifying
a text string and by reading scratch file 1.

NOTE As input to a note statement, the following text will be
written to a scratch file:

1. MATERIAL: STEEL

2. REMOVE ALL BURRS AND
SHARP EDGES.

Create and Writeto CREATE/TXT,1 NOTEDATA.TXT’
Text File WRITE/1,2. REMOVE ALL BURRS AND’
WRITE/1;, SHARP EDGES’

Note Definitions NOTE/-2.2,1.5,"1. MATERIAL: STEEL.
NOTE/-1.9,0,1,IFERR,A1:
JUMP/A2:
Al:
MESSG/TEMP’ERROR READING FILE’
A2:
HALT

1. MATERIAL: STEEL.

2. REMOVE ALL BURRS
AND SHARP EDGES.

YC

L ..

ZC

Figure 15—5 A programmed note and a note from scratch file # 1

7
; 157
Y,

GRIP Fundamentals ©EDS ioraphics NX 2
15-24 Student Guide All Rights Reserved Unigraphics N.

Dimensions and Drafting Aids

Label
Synopsis
Description
Parameters
NOTE

obj = LABEL/[{LEFT |RIGHT},] (origin),
{obj[,VIEW,View Name’] [,(origin)] |
(origin) } *text’[,’text’] +

Creates a label by specifying a text string and either an object or
an origin where the arrow terminates. The LABEL statement
can also be used to return an object.

LEFT and RIGHT

Determines which side of the text the leader line will begin on,
as viewed in a readable position. This parameter can also be
controlled by using Global Parameters &LEFT and &RIGHT by
entering the following statement:

&LEADER=&RIGHT or &LEADER=&LEFT

(origin)
The text location. See the beginning of this section for the
methods of specification.

obj
An existing object at which the leader line may terminate. The
object must be a point, line, arc, conic, or spline.

Labels are associative objects; therefore, if the object
specified for the leader line termination is deleted, both
objects will be deleted.

VIEW
Minor word that indicates that a view name is to follow.

’View Name’
This is a string variable or literal that is the view name.

(origin)

If an object is specified for the leader line, the end position of
the leader may be controlled by specifying a position, nearest
the point on the object, where the leader line will terminate. If

a position is not specified, the leader line will terminate at a ,/1/ /’,
point on the object nearest the origin of the text. See the y 37
beginning of this section for the methods of specification. /Y,

©EDS GRIP Fundamentals 15=25
All Rights Reserved Student Guide

7
; 157
Y,

Dimensions and Drafting Aids

(origin)

If an object is not specified for the leader line, a position must
be specified at which the leader line will terminate. See the
beginning of this section for the methods of specification.

’text’[,’text’] +

The ’text’ parameters may be either text between single quotes
or string variables. In either case, each text parameter is placed
on a new line. As many lines as desired may be included in the
label with the restriction that no more than 600 characters can
be contained in one label.

Example This example demonstrates the creation of two labels by
specifying a text string and a previously created circle where the
arrow will terminate.

Declarations ENTITY/CR1,LBL1,LBL2

Geometry Definition CR1 =CIRCLE/0,0,.5
&ENSITE=&TOPL

Label Definition LBL1 =LABEL/RIGHT,-2.2,1.5,CR1,’CIRCLE CRY’

LBL2 =LABEL/LEFT,.5,—1,CR1,0,—1,THIS IS’,$

"CIRCLE CRY’
HALT
CIRCLE CRI
THIS IS
CIRCLE CR!
Figure 15—6 Labels
15—=26 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Dimensions and Drafting Aids

Linear Centerline

Synopsis

Description

Parameters

NOTE

obj = CLINE/LINEAR,obj list[,VIEW,view name list]

Creates a linear centerline object. The linear centerline can be
created through a set of points or arcs or a single point or arc
and lies in the X-Y plane of the work coordinate system.

LINEAR
Minor word that causes a linear centerline to be generated.

obj list
A list of either points or arcs. The object list must contain at
least one object. It may contain up to 100 objects.

The objects must be colinear, if they are not colinear, you
will get a run time error.

Linear centerlines are associative; therefore, if the generating
objects are deleted, the centerline will be deleted.

VIEW
Minor word that indicates that a view name is to follow.

view name list

A list of strings which represents the view names. If you specify
only a single view name for a view name list that corresponds to
an object list, then the single view name is used for all the
objects in the corresponding object list.

7
; 157
Y,

©EDS GRIP Fundamentals 15=27
All Rights Reserved Student Guide

Dimensions and Drafting Aids

Example This example demonstrates the creation of two linear
centerlines using colinear points and circles.

$$

$$ Declarations

$$
ENTITY/P(4),CR(9),CTRLN(4)

$$
$$ Geometry Definitions

=POINT/-1.5,1.25
=POINT/-.5,1.25
=POINT/.5,1.25
=POINT/1.5,1.25
1)=CIRCLE/-1.5,.5,.125
CR(2)=CIRCLE/-15,.5,.125
CR(3)=CIRCLE/S,.5,.125
CR(4)=CIRCLE/15,.5,.125

$$

$$ Centerline Definition

P(1
P(2
P(3
P4
CR

CTRLN(l;=CLINE/LINEAR,P(l),P(2),P(3),P(4)

CTRLN(2)=CLINE/LINEAR,CR(1),CR(2),CR(3),CR(4)
5 |
$$ Program continues
$$
P(1) P(2) P(3) P(4)
SCF\’(1)SCF\'(Z]ECR(3)SCR(4)
;/////
715
////A Figure 15—7 Example of CLINE statement used for linear centerline
15-=28 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Dimensions and Drafting Aids

Drafting EDAs: Drafting Object Origin

Synopsis &ORIGIN (obj)
Description Returns the location in X, Y, and Z in the current work

coordinate system of the origin of a specified drafting object to a
receiving numerical array. The origin of a drafting object can
also be altered by writing coordinates to this EDA.

Characteristics Read/Write Three Position Numerical Array
+ Infinity
Parameters obj

Existing drafting object whose origin will be accessed.

7
; 157
Y,

©EDS GRIP Fundamentals 15=29
All Rights Reserved Student Guide

Dimensions and Drafting Aids

Drafting EDAs: Text

Synopsis &DMTEXT (obj)
Description Returns the text of a specified dimension or drafting aid to a
receiving variable or GRIP statement.
If the note contains more than one line of text, each line can be
returned to a properly declared string array. The first line takes
the first array position, the second line, the second position, etc.
Characteristics Read Only String 132 Characters Per Line
Parameters obj
Existing drafting object whose text will be returned.
Example This example demonstrates the use of the &DMTEXT EDA to
write a note using text from a dimension.
Declarations ENTITY/L(4),DIM1
STRING/STR(30)
BCKO010:
PARAM/ENTER STK DIMS’,$
‘LENGTH’,LNG,$
‘DIAMETER’,DIA,RESP
JUMP/L10:, TERM:,,RESP
L(1)=LINE/0,0,LNG,0
L(2)=LINE/LNG,0,LNG,DIA
L(3)=LINE/LNG,DIA,0,LNG
L(4)=LINE/0,LNG,0,0
DIM1=LDIM/HORIZ,LNG/2,3, XSMALL,L(3), $
XLARGE,L(3)
CYLDIM/LNG+1,ANG/2,YLARGE,L(2),YSMALL,L(2)
STR=&DMTEXT(DIM1)
NOTE/LNG/2,-.5REQUIRED MATERIAL STOCK = "+STR
CANCEL:HALT
;///// The note will be written with the same text as DIM1. There are
157 other ways to create this note; however, this method assures that
////A the decimal places in the note match the dimension.
15=30 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Dimensions and Drafting Aids

Activity: Dimensioning the L-shape

1 Use the program created in the L-Shape activity. Add the
dimensions shown in the original figure. The dimensions
should be the last action of the program.

2.0

< 1.0 =

Figure 15—8 Dimensioned L—Shape

7
; 157
Y,

©EDS GRIP Fundamentals 15=31
All Rights Reserved Student Guide

Dimensions and Drafting Aids

(This Page Intentionally Left Blank)

7
; 157
Y,

GRIP Fundamentals ©EDS ioraphics NX 2
15-32 Student Guide All Rights Reserved Unigraphics N.

Attributes (Optional)

Attributes (Optional)

Lesson 16 /777,
/ /
/ 16/
A,
Objectives

e Learn the GRIP statements used to assign, use and delete attributes.

Many of the interactive attribute options, especially NAME, are
performed in GRIP using GPAs and EDAs. See the respective
chapters on GPAs and EDAs found in this manual.

©EDS GRIP Fundamentals 16—1
All Rights Reserved Student Guide

Attributes (Optional)

Object Names
'//////
716 Using objects in a GRIP program, you have learned how to use an ENTITY/
7./ declaration statement to define a program variable name and reserve space in

the memory to store object identifiers. An object identifier is a system defined
tag that is used to distinguish various types of data in a part data model.

The following table describes the EDAs and major words used with object
attribute names. Notice that the KENAME EDA requires a number (n) which
indicates which occurrence of the object is returned. This means that object
names are not unique, and there can be many objects with the same name in a
GRIP program. The major word ENUM/ will indicate the total number of
objects with a specified name. Please note that you cannot set an object name
to &NULSTR; you must use the DELNAM/ major word for this.

Table 16—1 Object Name Commands

Type Format

Read/set object name &NAME({obj| name’})

Get number of named ENUM/ name’
object

Get nth object with &ENAME(n, name’[,IFERR, label:])
specified name

Delete Name DELNAM/{obj list| ALL}

Assign Object Attributes ASATT/{obj list| ALL|PART |’name’},attributes
list[,data_type]

Get Attribute Title &ATTTL({obj | PART | name’},seqno[,data_type])

Get Attribute Value &ATTVL({obj| PART |'name’},’title’[,IFERR label:]
[,data_type})

Delete Object Attribute DLATT/{obj list| ALL|PART |'name’},{title
list| ALL}[,data_type}

Control Name Display &ATDISL(obj)
Location (X,Y,Z)

GRIP Fundamentals ©EDS ioraphics NX 2
16-2 Student Guide All Rights Reserved Unigraphics N.

Attributes (Optional)

&NAME

Name

Synopsis

Description

Characteristics

Parameters

Valid Characters

/47
/ /
&NAME Object Name / 16 ;
.

&NAME(({obj |’name’})

Assigns a name to an object as an attribute. The assigned name may
be assigned to any number of objects. It is in addition to the geometric
object name (LN1=LINE/X,Y,Z) which is declared and must be

unique.

Read/Write String 30 Characters

obj
Existing object to which the name will be assigned or from which the
name will be returned.

‘name’

A string or string variable which represents the name of an object
such as a reference set to which the name will be assigned or from
which the name will be returned.

Use upper case A - Z, digits 0 - 9, and the following special
characters: “.” period, “-” hyphen, “#” pound sign, “/” slash, and “_”
underscore. Blank spaces may not be used. The maximum name

length is 30 characters.

©EDS GRIP Fundamentals 16=3
All Rights Reserved Student Guide

7Y
/16
Y,

Attributes (Optional)

Example

Declarations

This example demonstrates the use of the &KNAME EDA to assign a

name to several objects.

ENTITY/LN1,LN2,LN3,LN4,C(4)
LN1=LINE/0,0,4,0

LN2=LINE/0,3,4,3

LN3=LINE/0,0,0,3

LN4=1INE/4,0,4,3
C(1)=CIRCLE/5,.5,.25
C(2)=CIRCLE/3.5,.5,.25
C(3)=CIRCLE/5,2.5,.25
C(4)=CIRCLE/3.25,2.5,.25
&ATTDIS=&ON
&NAME(LN1)="PART_EDGEFE’
&NAME(LN2)="PART_EDGEFE’
&NAME(LN3)="PART_EDGFE’
&NAME(LN4)="PART_EDGFE’
&NAME(C(1))="MOUNTING_HOLES’
&NAME(C(2))="MOUNTING_HOLES’
&NAME(C(3))="MOUNTING_HOLES’
&NAME(C(4))="OFFSET_HOLFE’

PART_EDGE

PART _EDGE

PART_EDGE

T ING_HOLES @ET_}

T ING_HOLES T

HOLE

PART _EDGE

NG_HOLES

Figure 16—1 Assigning names to objects with attribute display on

16-4

GRIP Fundamentals ©EDS
Student Guide All Rights Reserved

Unigraphics NX 2

Attributes (Optional)

ENUM

Name

Synopsis

Description

Parameters

Example

Declarations

7
ENUM Get number of Named objects g 16 ;
7

num = ENUM/ name’

Returns the number of objects which have been assigned the same
name by the EDA &NAME.

‘name’

A literal string which is the name assigned to an object using the EDA
&NAME.

This example demonstrates the use of the ENUM statement to verify
the occurrences of the &KNAME, PART_EDGE.

ENTITY/LN(4)
LN(1)=LINE/-1,-1,1,-1
LN(2)=LINE/1,-1,1,1
LN(3)=LINE/1,1,-1,1
LN(4)=LINE/-1,1,-1,-1
&NAME(LN(1))="PART_EDGE’
&NAME(LN(2))="PART_EDGE’
&NAME(LN(3))="PART_EDGE’
&NAME(LN(4))="PART_EDGE’
ENTNUM=ENUM/PART_EDGE’

NOTE The numerically valued variable ENTNUM is assigned the
number 4.

©EDS GRIP Fundamentals 16-5
All Rights Reserved Student Guide

7Y
/16
Y,

Attributes (Optional)

&ENAME

Name

Synopsis

Description

Characteristics

Parameters

Example

Declarations

&ENAME Find the Nth Object with Given Name
&ENAME (n,/’name’[,IFERR label:])

Returns the object identifier of the nth object with the specified name
to a receiving variable or GRIP statement. You can use this function
to identify objects which were named interactively or in another GRIP
program. This EDA does not guarantee the order in which objects are
returned. Since object identifiers may change across sessions,
&ENAME returns object identifiers without regard to a particular
order.

NOTE The following object types are not valid for this EDA: 60,
61, 62, and 64 which correspond to View, Layout, Drawing, and
Reference Set.

Read Only Object 30 Characters

n

An integer representing the nth object in the data base with the given
name.

‘name’

The name, which can have a maximum of 30 characters, for which the
system will search.

NOTE You can use an asterisk character (*) as a wild card.

IFERR,label:

Specifies a label to which the program jumps if an error occurs. An
error occurs if there are no objects with the specified name or if the
number of objects with the given name is less than the value specified
by C(n77.

This example demonstrates the use of the &KENAME EDA to find the
third object with the name “SPOOLS” in order to change it to
“SPOOL6”.

ENTITY/E
E=&ENAME(3,SPOOL5",IFERR,A1:)
&NAME(E)="SPOOL6’
A1:MESSG/CANNOT FIND NAME’

16—-6

GRIP Fundamentals ©EDS Unioraphics NX 2
Student Guide All Rights Reserved grap

Attributes (Optional)

Declarations

In the next program, the first ten objects or the total number of
objects, whichever is smaller, with the name LOCK_PIN will be 77
/

deleted. ; 16 /

ENTITY/E(10) 7L
DO/A1:,1,1,10

E(I)=&ENAME(I,LOCK PIN’,IFERR,A2:)

Al:

A2:

=11

IF/1==0,JUMP/A3:

DELETE/E(1..I)

A3:

XYZ(1)=.5
XYZ(2)=.5
&ATDISL(LN1)=XYZ

©EDS GRIP Fundamentals 16=7
All Rights Reserved Student Guide

Attributes (Optional)

DELNAM
S
/ /
; 16, Name DELNAM Delete Name
Y,

Synopsis DELNAM/{obj list| ALL}
Description Permanently deletes the name assigned to an object.

Parameters obj list
A list of existing objects whose names you wish to delete.

ALL

Minor word which indicates that all objects in a given part which
satisfy the following conditions are to have their names deleted:

1. The object must be a selectable type/subtype.
2. The object must not be blanked.

3. The object must reside on a layer which is selectable in the
work view.

Example This example demonstrates the use of the DELNAM statement.

ENTITY/OBJ(2)
OBI(1) = LINE/0,0,1,1
OBIJ(2) = POINT/2,2,2

&NAME(OBI(1)) = 'LINET’
&NAME(OBI(2)) = 'POINTT’

DELNAM/OBJ
HALT

GRIP Fundamentals ©EDS Unigraphics NX 2
16-8 Student Guide Al Rights Reserved grap

Attributes (Optional)

ASATT

Name
Synopsis

Description

Parameters

ASATT Assign Object Attributes ,/1 /6 /j
/ /
/

ASATT/{obj list| ALL| PART |’name’},attribute list[,data_type] Y,

Allows you to assign object attributes to previously defined objects.

NOTE GRIP forces the case of attribute titles to uppercase.
Interactive Unigraphics only allows you to create and read uppercase
attribute titles. Variable length strings can be upper or lowercase.

obj list

The existing objects to which the attributes are to be assigned. If a
PART object identifier is included, it must be the first member of the
list.

ALL

Minor word which indicates that the attributes are to be assigned to
every object in the part (except manufacturing objects).

PART

Minor Word which indicates that the attributes are to be assigned to
the part instead of to individual objects.

‘name’

A string or string variable which represents the name (object
identifier) of an object such as a reference set.

attribute list

The attribute list is a string list which consists of an alternating series
of titles and values. The list must consist of an even number of
elements, where the odd numbered elements, 1, 3, 5, etc. are titles
and the even numbered elements, 2, 4, 6, etc. are values. The string
array length must be equal to the longest title and/or value in the list.
However, the maximum length of a title is 50 characters and the
maximum length of a value is 132 characters. The title cannot begin
with a dollar sign character ($).

Restrictions:

o Integer Range is any valid Unigraphics number.
Example: “13579”

o Real has 8 characters including 1 E sign.
Example: “3.5 E 107

¢ Date and Time must be in the format
“MM/DD/YY HH:MM”
Example: “09/30/91 04:35”

©EDS GRIP Fundamentals 16—9
All Rights Reserved Student Guide

7Y
/16
Y,

Attributes (Optional)

The reference data type allows you to embed an expression in the
reference string that uses a conversion specifier with the following
syntax:

<Xm.n@exp_name> or <Xm,n@exp_name> where:

<> the enclosing angle brackets identifies the
conversion specifiers and expression name for the
reference.

X indicates a reference to an expression.

m.n is the conversion specification for the f format used

in the C language. “m” specifies the minimum field
width. If necessary, it is padded on the left to make
up the field width. “n” specifies the maximum
number of digits after the decimal point of the
expression value. You can use a comma as the
decimal point character by specifying “m,n” instead

of “m.n”.
@ indicates that an expression name is to follow.
exp_name specifies the expression name on the left hand side

of an expression.

[,data_type]

The parameter data_type has been assigned a value of the GPA
&ATTYPE. Depending on the value of data_type, even numbered
elements in the attribute list are converted to the appropriate data
type.

NOTE Attribute values are represented as strings, but they are
internally converted to the specified data type. If the data type is not
specified, the default data type is variable length string.

Part attributes can only have a data_type of 5 (string); the system
ignores all other data_types for part attributes.

Data_Type | Explanation

Integer

Floating point

Date and time
Null

Variable length character

| | B~ W] N =

Reference

GRIP Fundamentals ©EDS Unieraphics NX 2
16-10 Student Guide All Rights Reserved 8rap

Attributes (Optional)

Example

Declarations

Geometry Definition

Attribute Assignment

Reassign Value for

Attribute Assignment

STRING/ATR(2)

ATR(1)="TITLE’ y

ASATT/ENTATR,3 ?1/6/2
/

ATR(2)=10 ZZ

ASATT/ENTATRI1,1

This example demonstrates the use of the ASATT statement.

ENTITY/LN(4),CR(2)
STRING/ATT(6,132)

LN(1) =LINE/-1,-1,1,-1
LN(2) =LINE/1,-1,1,1
LN(3) =LINE/1,1,-1,1
LN(4) =LINE/-1,1,-1,-1
CR(1) =CIRCLE/-5,-5,.25
CR(2) =CIRCLE/.5, 5,25
ATT(1)="USE’
ATT(2)="PART EDGE’

ASATT/LN,ATT(1..2)

ATT(2)="MOUNTING HOLE’
ATT(3)="DRILL

ATT(4)=".5 DIA. .75 DEEP’
ATT(5)="TAP’

ATT(6)="9/16 18 THREAD’

ASATT/CR,ATT

This example would assign attributes to each object in the arrays LN
and CR in the following manner:

Objects Attribute Title | Attribute Value
LN(1..4) USE PART EDGE
CR(1..2) USE MOUNTING HOLE
CR(1..2) DRILL .5 DIA. .75 DEEP
CR(1..2) TAP 9/16-18 THREAD
©EDS GRIP Fundamentals 16—11

All Rights Reserved Student Guide

/2
7167

Y,

Attributes (Optional)

&ATTTL

Name &ATTTL Get Attribute Title

Synopsis &ATTTL({0bj | PART |’name’},seqno[,data_type])

Description Returns the title of the attribute which is referred to by the specified
sequence number.

Characteristics Read Only String 50 Characters

Parameters obj
Existing object from which attribute titles will be accessed.
PART
Minor word which indicates that the part attributes will be accessed.
‘name’
A string or string variable which represents the name of an object
such as a reference set.
seqno
Sequence number of the desired attribute title. The attribute titles are
sequenced in a linear manner (e.g., the first title assigned is 1, the
second title assigned is 2, and so on where each title is of a given data
type).
[,data_type]
The parameter data_type has been assigned a value of GPA
&ATTYPE. If data_type is not specified, the default data type is
variable length string.

NOTE Reference attributes do not use sequence numbers.
Therefore, ATTTL does not return reference titles. Please refer to the
notes on reference attributes in the attribute section of the
Unigraphics Essentials User Guide for a description of the use of
reference attributes.
Part attributes can only have a data_type of 5 (string); the system
ignores all other data_types for part attributes.
16—12 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Attributes (Optional)

Example

Declarations

Data Type | Description

Integer

Floating point

Date and time

Null string

| B W N —

Variable length character

This example demonstrates the use of the &KATTTL EDA to extract

an attribute title.

$$ DECLARATIONS
GRIPSW / DECLRV
ENTITY / OBJ
STRING / MYATTS(14,132), MYTTL(7,132), MYVAL(7,132)
NUMBER / INDX

$$ CREATE OBJECT
OBJ = CIRCLE / 1,1,1

$$ INITIALIZE AN INTEGER ATTRIBUTE

MYATTS(1) = NUMBER OF FLOATS AND STRINGS’
MYATTS(2) =2’

$$ INITIALIZE FLOATING POINT ATTRIBUTES
MYATTS(3) = 'HOLE DEPTH’
MYATTS(4) ='1.0
MYATTS(5) = 'HOLE WIDTH’
MYATTS(6) ='1.5

$$ INITIALIZE A DATE AND TIME ATTRIBUTE
MYATTS(7) = 'DATE CREATED’
MYATTS(8) = ’09/16/96 14:35’

$$ INITIALIZE A NULL ATTRIBUTE
MYATTS(9) = 'NULL DATA’
$$ MYATTS(10) = &NULSTR

$$ INITIALIZE STRING ATTRIBUTES
MYATTS(11) = '"HOLE DESCRIPTION #1’

)
MYATTS(12) = 'This circle represents a hole.’
MYATTS(13) = '"HOLE DESCRIPTION #2’
MYATTS(14) = 'The hole specifications are provided as

©EDS GRIP Fundamentals 16—13

All Rights Reserved Student Guide

72
716

Y,

Attributes (Optional)

attributes.’

//1/6/: $$ ASSIGN THE ATTRIBUTES
// > / ASATT / OBJ, MYATTS(1..2), 1
ASATT / OBJ, MYATTS(3..6), 2

ASATT / OBJ, MYATTS(7..8), 3

ASATT / OBJ, MYATTS(9..10), 4

ASATT / OBJ, MYATTS(11..12), 5

(13..1

9.
1
ASATT / OBJ, MYATTS(1

),
2),
4)
$$ READ THE ATTRIBUTE TITLES AND VALUES
MYTTL(1) = &ATTTL(OBJ,1,1)
MYVAL(1) = &ATTVL(OBJ,MYTTL(1),1)

1
3.

MYTTL(2) = &ATTTL(OBJ,1,2)
MYVAL(2) = &ATTVL(OBJ,MYTTL(2),2)

MYTTL(3) = &ATTTL(OBJ,2,2)
MYVAL(3) = &ATTVL(OBJ,MYTTL(3),2)

MYTTL(4) = &ATTTL(OBJ,1,3)
MYVAL(4) = &ATTVL(OBJ,MYTTL(4),3)

MYTTL(5) = &ATTTL(OBJ,1,4)
MYVAL(5) = &ATTVL(OBJ,MYTTL(5),4)

MYTTL(6) = &ATTTL(OBJ,1,5)
MYVAL(6) = &ATTVL(OBJ,MYTTL(6),5)

MYTTL(7) = &ATTTL(OBJ,2)
MYVAL(7) = &ATTVL(OBJ,MYTTL(7))

$$ OUTPUT THE REPORT
EJECT / PRINT
DO /DOLUP:, INDX, 1,7

DOLUP: PRINT / MYTTL(INDX) + =’ + MYVAL(INDX)

HALT
The CRT would appear as follows:

NUMBER OF FLOATS AND STRINGS = 2
HOLE DEPTH = 1.000000

HOLE WIDTH = 1.500000

DATE CREATED = 9/16/96 14:35

NULL DATA =

HOLE DESCRIPTION #1 = This circle represents a hole.

16—14 GRIP Fundamentals ©EDS
- Student Guide All Rights Reserved

Unigraphics NX 2

Attributes (Optional)

HOLE DESCRIPTION #2 = The hole specifications are provided as

attributes. /////5
716 /
Y,
OPERATION REPORT S

DRILL .203 DIA. .75 DEEP
TAP 1/4-20 .5 DEEP
COST 135

©EDS GRIP Fundamentals 16—15
All Rights Reserved Student Guide

Attributes (Optional)

&ATTVL
S
716 7 Name &ATTVL Get Attribute Value
/
2000
Synopsis &ATTVL({obj | PART |'name’} ’title’ ,IFERR]label:] [,data_type])
Description Provides the only method of obtaining the value of an attribute. In
addition, it is a unique and efficient method of editing the value of an
existing attribute.
Characteristics Read/Write String 132 Characters
Parameters obj
Existing object whose attribute values will be accessed.
PART
Minor word which indicates that the part attributes will be accessed.
’name’
A string or string variable which represents the name of an object
such as a reference set.
title’
The attribute title whose corresponding value will be accessed.
[,data_type]
The parameter data_type has been assigned a value of GPA
&ATTYPE. If data_type is not specified, the default data type is
variable length string. Note that you do not have to write anything to
the Null attribute.
Part attributes can only have a data_type of 5 (string); the system
ignores all other data_types for part attributes.
Data Type | Description
1 Integer
2 Floating point
3 Date and time
4 Null string
5 Variable length character
7 Reference
16—16 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Attributes (Optional)

Example

Declarations

IFERR,label:
Specifies a label to which the program jumps if an error occurs. An /S
error occurs when the specified title does not exist for the object. 716 7

Y,

This example demonstrates the use of the &ATTVL EDA to extract
values.

GRIPSW/declrv
NUMBER/I
ENTITY/CR(3)
STRING/ATT(12,132),PR(6,132)
CR(1)=CIRCLE/1,1,.5
CR(2)=CIRCLE/2,1,.5
CR(3)=CIRCLE/3,1,.5
$$ DECLARE INTEGER ATTRIBUTE
ATT(1)="HOLE DEPTH’
ATT(2)="2
$$ DECLARE FLOATING POINT ATTRIBUTE
ATT(3)="HOLE WIDTH’
ATT(4)="1.75
$$ DECLARE DATE & TIME ATTRIBUTE
ATT(5)="DATE CREATED’
ATT(6)="06/25/92 14:35’
$$ DECLARE A NULL ATTRIBUTE
ATT(7)="NULL DATA
$$ TO DECLARE A STRING ATTRIBUTE
ATT(9)="HOLE DESC’
ATT(10)="This hole was created ’$
+’on jun 25, 92 at 2:35pm and has a NULL attribute.’
$$ DECLARE A REFERENCE
EXPCRE/DEPTH = 2
EXPCRE/WIDTH = 1.75°
ATT(11)="HOLE DIMS’
ATT(12)="This hole is <X2.2@DEPTH> inches deep ’$
+’and <X2.2@WIDTH> inches wide.’
ASATT/CR(1),ATT(1..2),1
ASATT/CR(2),ATT(3..4),2
ASATT/CR(3),ATT(5..6),3
ASATT/CR(3),ATT(7..8),4
ASATT/CR(3),ATT(9..10)
ASATT/CR(3),ATT(11..12),6
PR(1)=&ATTVL(CR(1),HOLE DEPTH’,1)
PR(2)=&ATTVL(CR(2),HOLE WIDTH’, 2)
PR(3)=&ATTVL(CR(3), DATE CREATED’,3)

©EDS GRIP Fundamentals 16—17
All Rights Reserved Student Guide

Attributes (Optional)

PR(4)=&ATTVL(CR(3),NULL DATA’,4)
), PR(5)=&ATTVL(CR(3),HOLE DESC’)
/16 PR(6)=&ATTVL(CR(3), HOLE DIMS’)
' PRINT/HOLE DEPTH REPORT’

7 DO/L1:11,6

PRINT/PR(])

L1:

HALT

You can obtain the first title for CR(1) by using the attribute title
EDA. That title can then be used to edit the value for the hole depth:

TLE=&ATTTL(CR(1),1,1)
&ATTVL(CR(1),TLE,1)="20’

GRIP Fundamentals ©EDS Unieraphics NX 2
16-18 Student Guide All Rights Reserved 8rap

Attributes (Optional)

DLATT

Name

Synopsis

Description

Parameters

7
DLATT Delete Object Attribute 716 /

/
7
DLATT/{obj list| ALL|PART |’name’},{title list| ALL}[,data_type]

Deletes object attributes assigned to an object. Note that attributes
on a tool object are not affected by this statement.

obj list

The list of objects from which the specified attributes are to be
deleted. If the PART object identifier is included, it must be the first
member.

ALL

Minor word which indicates that the specified attributes are to be
deleted from all of the objects in the part (except manufacturing
objects).

PART

Minor word which indicates that the attributes are to be deleted from
the part instead of from individual objects.

‘name’

A string or string variable which represents the name (object
identifier) of an object such as a reference set.

title list

The title list is a string list which consists of the attribute titles which
are to be deleted from the specified objects.

ALL

Minor word which indicates that all of the attributes are to be deleted
from the specified objects.

[,data_type]

The parameter data_type has been assigned a value of the GPA
&ATTYPE. Depending on the value of data_type, object attributes
for all specified objects are deleted. If data_type is not specified, the
default data type is variable length string.

Part attributes can only have a data_type of 5 (string); the system
ignores all other data_types for part attributes.

©EDS GRIP Fundamentals 16—19
All Rights Reserved Student Guide

Attributes (Optional)

Data_Type | Explanation
;// 7 /5 1 Integer
y 167 2 Floating point
2 .
3 Date and time
4 Null
5 Variable length character
6 All data types
7 Reference
Example This example demonstrates the use of the DLATT statement.
Declarations ENTITY/LN(4),CR(2)
STRING/ATT(6,132)
Geometry Definition LN(1) =LINE/-1,-1,1,-1
LN(2) =LINE/1,-1,1,1
LN(3) =LINE/1,1,-1,1
LN(4) =LINE/-1,1,-1,-1
CR(1) =CIRCLE/-5,-5,.25
CR(2) =CIRCLE/.5,.5,.25
ATT(1)="USFE’
ATT(2)="PART EDGF’
Attribute Assignment ASATT/LN,ATT(1..2)
Reassign Value for ~ ATT(2)="MOUNTING HOLFE’
ATT(3)="DRILL
ATT(4)=".5 DIA. .75 DEEP’
ATT(5)="TAP’
ATT(6)="9/16 18 THREAD’
Attribute Assignment ASATT/CR,ATT
Delete Attribute DLATT/LN(1..3),ALL $All of the attributes are deleted from
$the lines in the object list LN(1..3).
DLATT/CR(1),ATT(1..2) $ATT(1) and ATT(2) are deleted from
$CR(1).
DLATT/ALL,ALL,1 $All integer attributes are deleted from
$all objects in the part.
DLATT/ALL,ALL $All string attributes are deleted from
$all objects in the part.
16—=20 GRIP Fundamentals ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Attributes (Optional)

DLATT/ALL,ALL,6 $All attributes are deleted from all
$objects in the part (except 77
$manufacturing objects). 2 16 4
Y,
©EDS GRIP Fundamentals 16=21

All Rights Reserved Student Guide

7Y
/16
Y,

Attributes (Optional)

&ATDISL

Name

Synopsis

Description

Characteristics

Parameters

Example

Declarations

&ATDISL Control Name Display Location (X,Y,Z)

&ATDISL (obj)

Allows the origin coordinates of the object name, which are in the
work coordinate system, to be obtained or altered. Display origins,
which are determined automatically by the system at the time the
name is established, are as shown below.

Object Type Display Origin

Point The point

Line The midpoint

Arc The midpoint

Conic The midpoint

Spline The first knot point

Surface The midpoint

Group system | The first non-group member

Plane The origin

Coordinate The origin

Read/Write Three Position Numerical Array (N(3))
% Infinity

obj
Existing object from which the name location will be accessed.

This example demonstrates the use of the &KATDISL EDA to extract
the name display location of a line and alter that location.

ENTITY/LN1
NUMBER/XYZ(3)
LN1=LINE/—1,0,1,0
XYZ=&ATDISL(LN1)

The variable array XYZ would be assigned the values (0,0,0) which is
the midpoint of line LN1. The statements below alter the origin and
cause the name to be displayed at the coordinates (.5,.5,0).

GRIP Fundamentals ©EDS nigraphics NX 2
16-22 Student Guide All Rights Reserved Unigrap.

ASCII Conversion Table

ASCII Conversion Table

Appendix A
Ascll Ascll Ascll
CHARACTER | VALUE |CHARACTER | VALUE |CHARACTER | VALUE
(BLANK) 32 ? 63 A 94
! 33 @ 64 - 95
” 34 A 65 ‘ 96
35 B 66 a 97
$ 36 C 67 b 98
% 37 D 68 c 99
& 38 E 69 d 100
’ 39 F 70 e 101
(40 G 71 f 102
) 41 H 72 g 103
* 42 | 73 h 104
+ 43 J 74 i 105
: 44 K 75 j 106
- 45 L 76 k 107
: 46 M 77 | 108
/ 47 N 78 m 109
0 48 0 79 n 110
1 49 P 80 o) 111
2 50 Q 81 P 112
3 51 R 82 q 113
4 52 S 83 r 114
5 53 T 84 s 115
6 54 U 85 t 116
7 55 \% 86 u 117
8 56 w 87 v 118
9 57 X 88 w 119
58 Y 89 X 120
; 59 z 90 y 121
< 60 [91 z 122
= 61 \ 92 { 123
> 62] 93 | 124
} 125
~ 126
©EDS

All Rights Reserved

GRIP Fundamentals
Student Guide

A-1

////

////

ASCII Conversion Table

////

////

(This Page Intentionally Left Blank)

©EDS . .
A=2 GRIP Fundamentals All Rights Reserved Unigraphics NX 2
Student Guide

GRIP Debugger

GRIP Debugger
Appendix B

v
7B
7/

©EDS
All Rights Reserved SR IP Fundamentals B-1

GRIP Debugger

GRIP Debugger

The Debug GRIP option allows you to debug GRIP code while running a
program. The GRIP compiler and linker automatically generate debuggable
code. Use the Debug GRIP execution option to run the GRIP debugger and
identify further problems in the code.

You can use the GRIP debugger on any system that Unigraphics supports. The
debugger is not available in GRIP batch because of its interactive nature, so it
will not be available in any form on terminals that cannot run Unigraphics.
However, you can batch compile and link code.

The GRIP debugger has capabilities which include manipulation of breakpoints,
examination of variables, and control of program execution. All user
interaction is done through menus.

Features of the Debugger

The debugger enables you to perform the following activities.

e Set, clear, and list break points at any line or label within the program.
e Examine the value of entity, number, string, or array variables.
e Change the value of a number or string variable.

e List all variables in a particular program or subprogram, and allow the
user to look at the name, type, and dimensions of all variables in a
subprogram or program.

e Control the program execution in the following ways:

single step into a called subroutine

single step over a called subroutine

continue from the breakpoint

abort the program.

The most important benefit to you, the programmer, is that by using
breakpoints you can stop the program, and examine and modify number and
string variables. You can examine, but not modify, entity variables.

©EDS . .
B-2 GRIP Fundamentals All Rights Reserved Unigraphics NX 2
Student Guide

GRIP Debugger

Running a Program with the Debugger

When you choose File - Execute/UG Open — Debug Grip, the system prompts
you to specify a file to debug. The Compile option on GRADE automatically
generates debuggable code when compiling a GRIP program.

The GRIP Debugger Menu

Once you’ve specified a file to debug, the system displays the main Debug GRIP

menu containing the following options: ;//B(/;
/ /
Single Step 7777

Single Step/Into

Set Breakpoints

Clear Breakpoints
Examine Variables/Entities
Set Variable

List Option

Continue

Program Abort

The menu header lists the following program information:

(subprogram) = name of the current subprogram
(line #) = the current line number of the program
(reason stopped) = the reason for suspending the program

The debugger will suspend execution for one of the following four reasons.
Each is listed with its abbreviation as it appears on the menu:

Initial Entry (INIT ENTRY)
Breakpoint (BREAKPOINT)
Single Step (SINGLE ST.)
Single Step Into (Step/Into)

©EDS
All Rights Reserved SR IP Fundamentals B-3

I/,
/B
7777

GRIP Debugger

Single Step
The interpreter executes the current statement and suspends at the next line.

If the current instruction is a CALL statement, the interpreter executes all
instructions and observes all breakpoints in the called subprogram. When
control returns to the calling subprogram, the system sets a temporary
breakpoint at the line following the CALL statement and suspends program
execution. To resume program execution, choose either Single Step or
Continue from the main Debug GRIP menu.

For example, if in the calling routine there is no breakpoint between the current
line and the line that follows, the interpreter suspends the program due to
Single Step. However, if there is a breakpoint(s) in between the two lines and
the program execution suspends at the temporary breakpoint, the reason
stopped is Breakpoint.

Single Step/Into
The interpreter executes the current statement and suspends at the next line.

If the current instruction is a CALL statement, the system suspends program
execution at the first executable statement in the called subprogram. The
reason stopped is Step/Into.

Single Step and Single Step/Into perform exactly the same for all non-CALL
statements.

Set Breakpoints

Allows you to set breakpoints at either specific line numbers or labels within a
specified program. By setting breakpoints, you can suspend program execution
at specified locations. You can then examine the status of the program by using
other debugger options.

The maximum number of breakpoints you can set in one program is 26. When
you choose this option, the system prompts you with the following options:

PROG_NAME
Line/Label

B-4

©EDS . .
GRIP Fundamentals All Rights Reserved Unigraphics NX 2
Student Guide

GRIP Debugger

PROG_NAME allows you to enter the name of a subprogram in which you wish
to set a breakpoint. The maximum length of the name including the extension
is 30 characters. The default is the current subprogram name.

If the system cannot find the input name, it displays the message

Undefined Subprogram Name

Line/Label allows you to specify the line number or label name where you wish
to set the breakpoint.

If you enter a line number: 7B/
/

e and the input line number is less than the line number of the first
executable statement in the program, the system displays the line
number of the first executable line and sets a breakpoint at that line.

¢ and the input line number is greater than the last line in the program,
the system displays the line number of the last executable line.

¢ and the input line number is at a comment, the system displays the line
number of the two closest executable lines, one before and one after
the comment.

If you enter a label name, the system sets a breakpoint at that label. You can
enter the label name either by itself (END) or with a colon (END:). The length
of an input label can be more than 6 characters, but the system only uses the
first 6 characters, so they should be unique.

If the system cannot find the label name, it displays the error message

Undefined Label Name

NOTE There is no line number assigned to DO loop labels in the
object code. Therefore, in order to set a breakpoint at a
DO loop label, you must have a dummy statement at the
DO loop termination.

©EDS
All Rights Reserved SR IP Fundamentals B-5

I/,
/B
7777

GRIP Debugger

Clear Breakpoints

Allows you to remove any or all breakpoints previously set in the program. If
you have not previously set any breakpoints, the system displays the error
message

There Is No Breakpoint To Clear

and returns to the main Debug GRIP menu.

If there are one or more breakpoints set in the program, the system displays a
list of the current breakpoints set in the program.

Choosing All clears all breakpoints, including any temporary breakpoints, from
the program. The system then returns to the main Debug GRIP menu.

If there are 13 or more breakpoints in the program, Next Page will appear as
the final option allowing you to continue on through the remaining breakpoints.

Choosing one or more breakpoints clears those selected breakpoints from the
program.

Examine Variables/Entities

Allows you to display the values of variables and/or entities in a specified
program. When you choose this option, the system displays the following
options:

PROG_NAME
VAR_NAME

PROG_NAME allows you to enter the name of the subprogram in which you
wish to examine variables. If no name is entered, the system defaults to the
current subprogram.

©EDS . .
GRIP Fundamentals All Rights Reserved Unigraphics NX 2
Student Guide

GRIP Debugger

VAR_NAME allows you to enter the name of the variables/entities you wish to
examine. Based on the type of variable/entity specified, the system sends the
following information to the listing window.

e Variable/Entity name by itself:

Numeric variable: subprogram name, variable name, real value
String variable: subprogram name, variable name, string value

Numeric array variable: subprogram name, variable name,
indices, real value at each index

String array variable: subprogram name, variable name, indices,
string value at each index

Single entity: subprogram name, entity name, value (either null
entity, the value of the valid entity, or invalid entity)

Entity array: subprogram name, entity name, indices, value at
each index (either null entity, the value of the valid entity, or
invalid entity)

e Variable/Entity name with an index: If a variable/entity is not an array
type, or the input index is out of range, the system displays an error
message. When examining an index of a variable/entity there should
only be one open and one closed parenthesis, and 0, 1, or 2 commas,
depending on the variable/entity dimension. The index values must be
constants.

e Numeric array variable: subprogram name, variable name, index

and real value of that index

String array variable: subprogram name, variable name, index
and string value of that index

Entity array: subprogram name, entity name, index, value of
that index (either null entity, the value of the valid entity, or
invalid entity)

e Variable/Entity name with a subrange: If a variable/entity is not an

array type, or the input subrange is out of range, the system displays an

error message. When examining a subrange of a variable/entity, there
should only be one open and one closed parenthesis, and double
periods (..) between the lower and upper bounds, as well as 0, 2, or 4
commas depending on the variable/entity dimension. The lower and
upper bound values must be constants.

e Numeric array variable: subprogram name, variable name,

indices from lower to upper range, real value of each index

©EDS GRIP Fundamentals B-7

All Rights Reserved Student Guide

v
7B
7/

I/,
/B
7777

GRIP Debugger

e String array variable: subprogram name, variable name, indices

from lower to upper range, string value of each index

e Entity array: subprogram name, entity name, indices from

lower to upper range, value of each index (either null entity, the

value of the valid entity, or invalid entity)

Set Variable

Allows you to set a variable one value at a time; you cannot set a range using
this option. When you choose this option, the system displays the following
options:

PROG_NAME
VAR_NAME

PROG_NAME allows you to enter the name of the subprogram in which you
wish to set the variable. If no name is entered, the system defaults to the
current subprogram.

VAR_NAME allows you to enter the name of the variable you wish to set.

If the specified variable is a number, the system sends the subprogram name,
variable name, and its original value to the listing device. If the variable is a
numerical or string array, the system sends the variable name, index, and

original value of that index. The system then prompts you to enter a new value.

If the specified variable is a string, the system sends the subprogram name,

variable name, its original value, and (for arrays) any indices and their values to

the listing device. The system then prompts you to enter a new string.

After specifying the new variable, the system sends the new value to the listing
device and returns to the Set Variable menu.

©EDS . .
GRIP Fundamentals All Rights Reserved Unigraphics NX 2
Student Guide

GRIP Debugger

List Options

Allows you to list subprograms, and breakpoints contained in the program.
When you choose this option, the system displays the following options:

List Variables

List All Variables

List All Subprograms

List Breakpoints

Continue

List Variables in Subprogram
List All Variables

List All Subprograms

List Breakpoints

List Variables in Subprogram allows you to list all the variable
names, types, and dimensions of a specified subprogram. When
you choose this option, the system prompts you to enter the
name of the subprogram.

The system defaults to the name of the current subprogram. All
variable names, types and dimensions in the specified
subprogram are sent to the current listing device. If the variable
type is a number or label, the system only sends the name and
the type.

List All Variables allows you to list all variable/label names,
types, and dimensions of ALL subprograms. The system sends
the information to the current listing device, starting with the
main program and continuing to the last subprogram. The
system lists each program name, followed by the variable names,
types, and dimensions in each subprogram. If the variable type
is a number or label, then only the name and type is listed.

List All Subprograms allows you to send to the current listing
device all subprogram names, along with the name of the main
program.

List Breakpoints sends a list of all breakpoints to the current
listing device. The system sends the module name and the line
number of each breakpoint.

This option continues program execution until the next breakpoint or the end
of the program.

Program Abort

This option aborts program execution.

©EDS
All Rights Reserved SR IP Fundamentals B-9

v
7B
7/

GRIP Debugger

I/,
/B
7777

(This Page Intentionally Left Blank)

©EDS . .
B-10 GRIP Fundamentals All Rights Reserved Unigraphics NX 2
Student Guide

Final Project

Final Project
Appendix C

v,
/ /

/ /
v,

©EDS RIP Fundamental
All Rights Reserved gm dent Guide C-1

Final Project

Activity: Creating a Spur Gear

Use curve creation and transformation commands to construct the profile of
the spur gear shown below.

Z ‘
Ay
77777 \

TIP A “Best Practice” is to compile, link and run the
program often. This will highlight the functionality
and effect of small sections of code. This incremen-
tal approach to coding also allows easier debugging
of a program.

©EDS

C-2 GRIP Fundamentals All Rights Reserved Unigraphics NX 2

Student Guide

Final Project

Step 1 Create the arcs to define half of a gear tooth. There will
be a total of 6 arcs per tooth. Only three arcs are created
explicitly; the other three are mirrored.

v,
/ /

/ /
v,

1 Create the addendum (outer),circle, pitch circle, and the
dedendum (inner) circle. The outer and inner circles will be
trimmed to form two of the arcs needed for the tooth. The
pitch circle will be used for construction purposes and
deleted.

©EDS
All Rights Reserved SR IP Fundamentals C-3

Final Project

/ In(3) —.126 ' \

/ In(2
I In(1) ==
cln 1

~ - \ _ — / _ _ /
76///
/ /
5/////‘ 1 Create a horizontal line along the XC-Axis representing the

centerline of the first tooth. Create three additional lines
parallel to the centerline with the distances shown.

— ©EDS N
C-4 GRIP Fundamentals All Rights Reserved Unigraphics NX 2
Student Guide

Final Project

In(4)

\\ > . //
~—— __—"
77,
1
1 Create a point at the WCS origin (orgpt). Create a line /)

(In(4)) through the origin point at half the angle of rotation
for 25 teeth (360/(2%25)).

©EDS
All Rights Reserved SR IP Fundamentals C-5

Final Project
cir(2)
cir(3) (\\ cir(1)

In(3)
In(1) ———

pt(1)

‘\
pt3) | pt(2)
T
|

1 Create three points at the intersections of the horizontal
lines and the circles. These points will be used to create the

side of the tooth.

v
<
27
1 Create the first arc, tooth(1), through three points for the
side of the tooth.

Unigraphics NX 2

©EDS
All Rights Reserved

C-6 GRIP Fundamentals
Student Guide

Final Project

\cir(2)
\ pt(1)

+ - —1 tooth(2)

l

1 Trim the outer circle (cir(1)) to end at pt(1). The start point
will remain unchanged. Use the &EPOINT EDA to edit the
end point of this arc to the existing point pt(1). This arc will
be the end of the tooth.

7/

1 Delete two of the three intersection points (pt(1) and pt(2)) % //

as they are no longer needed. Create a new intersection
point using the line at an angle, In(4), and the inner circle,
cir(3). Trim the inner circle by changing both the start and
end points. Use the &SPOINT and &EPOINT EDAs to
convert the circle to an arc.

Step 2 Apply a mirror transformation to the three arcs about the
horizontal centerline to create the complete tooth.

cir(3 cir(2) cir(1)

tooth(3)
tooth(1)
cln I tooth(2)
| tooth(5)
tooth(4)
tooth(6)
Al Rights Reserved SR IP Fundamentals Cc-7

Final Project

J Create the mirror matrix, then use TRANSF/ to mirror the
tooth arcs.

Step 3 Apply a rotation transformation to the six arcs
representing the tooth to create the other 24 teeth.

/S
A5
/S

] Create a rotation matrix, then use TRANSF/ to rotate the
tooth arcs. You can place the transformation command in a
DO loop to create multiple copies.

TIP Use a two—dimensional array for the arc objects used in
the tooth. The array should be 25x6 to hold the six arcs
needed for the 25 teeth

— ©EDS N
C-8 GRIP Fundamentals All Rights Reserved Unigraphics NX 2
Student Guide

Final Project

Step 4 Create a 0.5 inch radius circle for the hole and delete any
unwanted construction geometry.

/Y
c
v

Optional Steps

e Create an extruded solid body using the gear profile curves. Use a
thickness of 1 inch.

NOTE When you extrude a solid, edits to the base curves such as
the hole circle will change the solid. If you create the
hole using a boolean operation to subtract a cylinder, you
will not be able to change the hole diameter as easily.

e Add .03 inch fillet curves at the base and top of the teeth. Remember
to include the fillets in the transformation and extruded body
commands.

©EDS
All Rights Reserved SR IP Fundamentals c-9

Final Project

(This Page Intentionally Left Blank)

/S
A5
/S

©EDS . .
C-10 GRIP Fundamentals All Rights Reserved Unigraphics NX 2
Student Guide

Statement Format Summary

Statement Format Summary

Appendix D

This appendix contains an alphabetical list of all GRIP statements. This listing is
purely alphabetical, by major word, and assumes that you know the spelling of
the major word you are looking for. You may find this appendix most helpful
once you are familiar with the GRIP language and only need to reference the
format of certain statements from time to time.

Similar format summaries for GPAs and EDAs can be found in later sections.

Function Statement Format
ABSOLUTE VALUE OF ABSF(arg)
arg
ANGLE WHOSE ACOSF(arg)
COSINE IS arg

ADD ROW TO PARTS
LIST

ADDPL/{num list,string list[{,INT|,STR}],

quantity | obj list}
[,IFERR,label:]

ANGULAR DIMENSION

obj = ADIM/[MAJOR,](origin),”PMOD3" line1,
[VIEW, View Name’,]”’PMOD3” line2
[VIEW, View Name’]
[,Dim. text][,APPEND,App. text]

ANGLE OF A LINE ANGLF ({line|circle1,circle2| point1,point2})
7
2D ANALYSIS ANLSIS/TWOD[, TOLER,{],obj list, 7D/
{INCHES|MMETER|CMETER|METER} 700

,n(14)

3D ANALYSIS (Rotate
About XC or YC Axis)

ANLSIS/VOLREV,{XAXIS|YAXIS},d[, TOLER 1]
,obj list,{INCHES [MMETER | CMETER|
METER},n(41)

3D ANALYSIS (Project

ANLSIS/PROSOL,d,lim1,lim2[,TOLER,t]

Along ZC Axis) ,obj list,{INCHES |[MMETER |CMETER|
METER},n(41)
3D ANALYSIS ANLSIS/VOLBND,d[,ACCRCY,a|, TOLER,t],obj list,

(Bounded by Faces)

{LBIN|LBFT|GCM|KGM},n(41)

©EDS GRIP Fundamentals

All Rights Reserved Student Guide

D-1

S
5"
/ /
S

Statement Format Summary

Function

Statement Format

3D ANALYSIS (Thin
Shell)

ANLSIS/SHELL,d[,ACCRCY,a|, TOLERt],0bj list,
{LBIN|LBFT|GCM|KGM},n(41)

ARC LENGTH

ANLSIS/ARCLEN[TOLER,t],obj list,
{INCHES |MMETER|CMETER|METER},n

MASS PROPERTIES
OF SOLID BODIES

ANLSIS/SOLID[,ACCRCY,a|,TOLER,] entlist
{ LBIN|,LBFT|,GCM|,KGM},n

FILE POINTER APPEND/file#

CONTROL

ARC LENGTH obj = ARCDIM/(origin),Arc[,VIEW, View Name’]
DIMENSION [,Dim. text][,APPEND,App. text]

ASSOCIATED ENTITY
OF DIM/DRAFT ENTITY

ASCENT/ent,n,assoc. ent,[,assoc. type]
[,assoc. modifier]

[,IFERR,label:]
RETURN ASCII VALUE ASCII(’string’,pos)
OF CHARACTER
ASSIGN ATTRIBUTES ASATT/{obj list| ALL | PART | 'name’} ,attribute
list[,data_type]
ASSIGN FONT ASGNFT/name,number[,IFERR,label:]
ANGLE WHOSE SINE ASINF(arg)
IS arg
ANGLE WHOSE ATANF (arg)
TANGENT IS arg
AUTOMATIC obj = AUTOSF/entlist[,BYLAYR][,CNT,count]
SURFACING [,IFERR,label:]

IDENTIFY BASE FACE

obj = BASURF/ent[,IFERR,label:]

COMPILE, LINK, OR
RUN

num list = BATCH/{COMPIL|LINK|RUN} file list
[,LP|OS|NULL]
[, filespec’]
[,QUEUE,queuename]
[,STR,stringdata]
[,IFERR,label:]

D-2 GRIP Fundamentals

Student Guide

©EDS
All Rights Reserved

Unigraphics NX 2

Statement Format Summary

Function

Statement Format

CANCEL A BATCH JOB

num list = BATCH/CANCEL,job number list
[,IFERR,label:]

B—CURVE (Fit Method)

obj list = BCURVE/FIT,{obj list,num list1}
[[WGHT,num list2],
{SEGS|TOLER},num1[,DEGREE,num2]
[,START,{VECT,dx,dy,dz| TANTO,
{curve|angle}}]
[LEND,{VECT,dx,dy,dz| TANTO,
{curve|angle}}]
,STATUS,numal[,IFERR,label:]

B—SPLINE (Point
Method)

obj list = BCURVE/entlist[,VERT[,numlist]]
[, DEGREE,num[,CLOSED]]
[IFERR, label:]

B—SPLINE (Curve

obj list = BCURVE/entlist, ENDOF

Method) + {,entlist2 | ,numlist}
[,DELETE|,BLANK]
[,IFERR,label:]

BLANK BLANK/{obj list | ALL}

BLEND/CHAMFER BLEND/ent,{RADIUS | CHAMFR},num

SOLID EDGES [,entlist1] [,VERT,entlist2
[,IFERR,label:]

FIX BLEND/CHAMFER BLENFX/entlist[,IFERR,label:]

CREATE BLANK
CHARACTERS

BLSTR(n)

CREATE BOUNDARY
ENTITY

obj list = BOUND/[CLOSED | OPEN,]
[TOLER,intol,outtol,]
[{ON|TANTO, }entlist] +
[VIEW, 'View Name’]

BOUNDED PLANE

obj = BPLANE/obj list1[,HOLE,nlist,obj list2]
[TOLER 1]

B—SURFACE (Through
Points)

obj = BSURF/obj list,num list1[,VERT[,num list2]]
[DEGREE,num1[,CLOSED],num2
[,CLOSED]][,IFERR,label:]

©EDS
All Rights Reserved SR IP Fundamentals D-3

S
75
/ /
S

S
5"
/ /
S

Statement Format Summary

Function

Statement Format

B—SURFACE (Through
Curves)

obj = BSURF/CURVE,obj list1
[,LENDOF{ entlist2 | ,numlist}]
[DEGREE,num[,CLOSED]]
[,IFERR,label:]

B—SURFACE (Conic)

obj = BSURF/CONSRFnum1,entlist, SPINE,ent1
[,LENDOF,ent2][,RHO,nlist]
[,TOLER,num2][,APEX,ent3]
[,LRESULT,num3]
[,IFERR,label:]

B—SURFACE (Through
Curve Mesh)

obj = BSURF/MESH, entlist1,WITH,entlist2
[,TYPE,num1] [, TOLER,num2,num3]
[RESULT,num4]
[,IFERR,label:]

B—SURFACE (Swept)

obj = BSURF/SWPSRF
,TRACRV,entlist1[,ENDOF,entlist2]
,GENCRV,entlist3[,ENDOF,entlist4]
[,LBLEND,num1]
[,SPINE,ent1[,ENDOF,ent2]]
[,ORIENT{,ent3[,ENDOF,ent4] | ,xc,yc,zc}]
[,SCALE{,ent5[,ENDOFent6] | ,nlist}]
[,TOLER,num2,num3][,RESULT,num4]
[,IFERR,label:]

B—SURFACE (Convert
Existing Surface)

obj = BSURF/SURFC,ent[,APPROX]
[,TOLER,dtol,atol]
[,IFERR,label:]

CALL SUB—ROUTINE

CALL/'subprogram name’[,actual argument list]

CREATE CATEGORY

CAT/’name’[,layer list][,CAT, cat’]
[, DESCR, description’]

EDIT CATEGORY

CATE/'name’{,ADD | ,REMOVE}
[,layer list][,CAT, cat list’]
[LDESCR;, description’][,IFERR,label:]

DELETE CATEGORY

CATD/ name’[,IFERR,label:]

QUERY CATEGORY

CATV/name’[,LAYER,layers,CNT,count]
[LDESCR, description’][,IFERR,label:]

D—4

GRIP Fundamentals
Student Guide

©EDS
All Rights Reserved

Unigraphics NX 2

Statement Format Summary

Function

Statement Format

CONCENTRIC
CIRCLES DIMENSION

obj = CCDIM/(origin),arc1,[VIEW, View Name’,]arc2
[,VIEW, View Name’][,{LEFT|RIGHT},]
[,Dim. text][,APPEND,App. text]

CHAIN SELECT

CHAIN/START,ent1[,{"PMODS3” | point}]
[LEND,ent2], ent array[,CNT,count]
[,IFERR,label:]

CHECK VALIDITY OF A
SOLID

CHKSOL/entlist, RESULT,nlist
[,IFERR,label:]

CURVE HIDING CURVE

CHIDC/obj list[,IFERR, label:]

CHOOSE OPTIONS

CHOOSE/string list,[DEFLT,n,]
[ALTACT,’message’,] response

RETURN STRING WITH
ASCII VALUE OF n

CHRSTR(n)

CIRCLE (Center Point,
Radius)

CIRCLE/CENTER,point,RADIUS,r
[,START,start angle,END,end angle]

(Center Point, Tangent
To A Line)

CIRCLE/CENTER,point,
TANTO,line
[,START,start angle,END,end angle]

(Center Point, Point On
Arc)

CIRCLE/CENTER,point1,point2
[,START,start angle,END,end angle]

(Through Three Points)

CIRCLE/point1,point2,point3

(Center Coords,

CIRCLE/x,y,[z,]r

Radius) [,START,start angle,END,end angle]
FULL BOLT CIRCLE obj = CLINE/FBOLT[,CENTER,obj
CENTERLINE [,VIEW, View Name’]],obj list

[,VIEW,{’View Name’ |view name list}]

FULL CIRCULAR
CENTERLINE

obj = CLINE/FCIRC
[,CENTER,obj[,VIEW, View Name’]]
,0bj list
[,VIEW,{’View Name’ |view name list}]

LINEAR CENTERLINE

obj = CLINE/LINEAR,obj list[,VIEW,view name list]

©EDS
All Rights Reserved SR IP Fundamentals D-5

S
75
/ /
S

S
5"
/ /
S

Statement Format Summary

Function

Statement Format

OFFSET CENTER
POINT (Format 1)

obj = CLINE/OFFCPT,{XCAXIS | YCAXIS}
,CENTER,0bj1,[VIEW, View Name’,]arc
[,VIEW, View Name’]

CENTERLINE (Format
1)

(Format 2) obj = CLINE/OFFCPT,{XCAXIS|YCAXIS} DSTCTR
,num,arc[,VIEW, View Name’]

(Format 3) obj = CLINE/OFFCPT,{XCAXIS|YCAXIS}
,DSTNRM,num,arc[,VIEW, View Name’]

OFFSET CYLINDRICAL obj = CLINE/OFFCYL,OFFDST,num,obj1,

[VIEW, View Name’,]
obj2[,VIEW, View Name’]

(Format 2)

obj = CLINE/OFFCYL,OFFPT,0bj1,
[VIEW, View Name’,]obj2,
[VIEW, View Name’,]Jobj3
[VIEW, View Name']

PARTIAL BOLT CIRCLE
CENTERLINE

obj = CLINE/PBOLT[,CENTER,obj
[LVIEW,View Name’]]
,0bj list[,VIEW,view name list]

PARTIAL CIRCULAR

obj = CLINE/PCIRC

CENTERLINE [,CENTER,obj[,VIEW, View Name’]]
,0bj list[,VIEW,view name list]

SYMMETRICAL obj = CLINE/SYMMET,obj1

CENTERLINE ,[VIEW, View Name’,]obj2
[LVIEW,View Name’]

COMPARE STRINGS CMPSTR('string1’,’string2’)

CYCLE OBJECTS IN A
COMPONENT

obj = CNEXT/component_obj_id,current_object
[,IFERR,label:]

CONE (Circle, Height,
Vertex Half—angle)

obj = CONE/arc,{"PMOD3” | paint},d,ANGLE,a

(Two Circles)

obj = CONE/arc1,arc2

(Center Point, Existing

Line)

obj = CONE/CENTER,point,[VECT,x,y,z,]line

D-6 GRIP Fundamentals

Student Guide

©EDS
All Rights Reserved

Unigraphics NX 2

Statement Format Summary

Function

Statement Format

(Vertex Point, Vertex

obj = CONE/point1,[VECT,x,y,z,]

Half—angle, Bounding ANGLE,a,point2,point3
Points)
COSINE OF angle COSF(angle)

PARAMETER num = CPARF/ent,{point|x,y,z}

POSITION ON A

CURVE

EXPORT A FILE CPATT/[UPDATE,] filespec’[,CSYS,csys]
[,ORIGIN,point],obj list[,IFERR,label:]

POSITION ON A CPOSF(ent,scalar)

CURVE OR CURVE

EXTENSION

GEOMETRIC CPROPF(obj,parameter)

PROPERTIES OF A

CURVE AT

PARAMETER

POINT SETS (Chordal
Tolerance Method)

CPSET/CHORD,obj,tolerance,results

POINT SETS (Equal
Parameter Method)

CPSET/EPARAM,ent,n
[,PART,a,b],results

(Equal Arc Method)

CPSET/EARCL,ent,n[,PART,a,b],results

(Input ArcLength Meth)

CPSET/ARCLEN,ent,arclength,results

(Geometric Progression
Method)

CPSET/GEOM,ent,n,RATIO,r[,PART,a,b],results

(Control Vertex Method)

CPSET/VERT,ent,results

(Knot Point Method)

CPSET/KNOT,ent,results

CREATE DIRECTORY

CRDIR/filespec’[,IFERR, label:]

CREATE A FILE

CREATE/{PART, filespec’
{,INCHES |MMETER} | TXT file#
[,number list][, filespec’]}
[,IFERR,label:]

©EDS GRIP Fundamentals

All Rights Reserved Student Guide

D-7

S
75
/ /
S

S
5"
/ /
S

Statement Format Summary

Function

Statement Format

CROSS PRODUCT OF

CROSSF(vector1,vector2)

TWO VECTORS
CREATE A CRRFST/’reference set name’,obj list
REFERENCE SET [,CSYS,csys][,ORIGIN,point]

CREATE SOLID EDGES
AND SILHOUETTES IN
WORK VIEW

CRSEWV/[TOLER{][,IFERR,LABEL:]

TRIM CURVE USING
BOUNDING ENTITIES

obj = CRVTRM/curve,REF {pt1|x,y,z},FIRST,limit1
[.REF {pt1 |xy,z}]
LINT.{pt2|x,y,z}]
[LNOTRIM]
[,SECOND,limit2[,REF,{pt1|x,y,z}]
LINT,{pt2|x,y,z}]1[NOTRIM]]
,STATUS,status
[,IFERR, label:]

WRITE TO SCREEN

CRTWRT/ message’,x,y,z

CSYS BY ORIGIN,
X—PT, Y=PT

obj = CSYS/point1,point2,point3[,ORIGIN,point]

CSYS BY X—AXIS,
Y—-AXIS

obj = CSYS/line1,line2[,ORIGIN,point]

CSYS BY X—PT, Z AXIS

obj = CSYS/point,line[,ORIGIN,point]

COORDINATE SYSTEM
OF AN ARC

obj = CSYS/arc[,ORIGIN,point]

COORDINATE SYSTEM
OF A CONIC

obj = CSYS/conic[,ORIGIN,point]

EXISTING
COORDINATE SYSTEM

obj = CSYS/coordinate system[,ORIGIN,point]

COORDINATE SYSTEM

obj = CSYS/{view number|’view name’}

Student Guide

OF VIEW [,ORIGIN,point]
VECTOR TANGENT TO CTANF (ent,scalar)

A CURVE
D-8 GRIP Fundamentals OEDS

All Rights Reserved

Unigraphics NX 2

Statement Format Summary

Function

Statement Format

TRIM CURVE BY GIVEN

CTRIM/ent,dist,{START|END | point}

ARCLENGTH or

CTRIM/TOTAL ent,length, {START | END | point}
CYLINDRICAL obj = CYLDIM/(origin),
DIMENSION [{ENDOF [CENTER | TANTO},]

"PMOD3”,0bj1,[VIEW, View Name’,]
[{ENDOF |CENTER|TANTO},]”"PMOD3”,
obj2[,VIEW, View Name’][,Dim. text]
[,APPEND,App. text]

CYLINDER (Arc,
Bounding Plane)

obj = CYLNDR/arc,plane,point

(Center Point, Line)

obj = CYLNDR/CENTER,point,line

(Center Point, Radius)

obj = CYLNDR/point,RADIUS,r

(Center Point, Radius,
Two Bounding Planes)

obj = CYLNDR/point1,[VECT,x,y,z,]JRADIUS,r
,blane1i plane2,point?2

(Radius, Between Two
Surfaces)

obj = CYLNDR/surf1,surf2, CENTER,point1,
RADIUS,r,plane1,plane2,point2

INITIALIZE VALUES
FOR STRING AND
NUMERICAL
VARIABLES

DATA/name,value[,value] +[,name,value[,value] +]+

RETURN CURRENT
DATE

DATE

CLOSE DIRECTORY

DCLOSE[/IFERR,label:]

DIAMETER

obj = DDIM/(origin),arc[,VIEW,View Name’]
[,Dim. text][,APPEND,App. text]

DELETE ENTITIES

DELETE/{obj list|ALL}

CHANGE DELIMITER

DELIM/ character’

DELETE OBJECT
NAME

DELNAM/{obj list|ALL}

©EDS
All Rights Reserved SR IP Fundamentals D-9

S
75
/ /
S

S
5"
/ /
S

Statement Format Summary

Function

Statement Format

SET ENTITY LINE

DENS/{NORM |HEAVY | THICK| THIN}

DRAFTING ENTITY

WIDTH

SET DEPTH DEPTH/z

DEVIATION CHECKING DEVCHK/ent1[,ent1a],TO,ent2[,p1[,p2]]
[,[TOLER,t1[,t2]]

SPECIAL CONTROL DFSTR/(num)

FUNCTIONS

ADD SYMBOL TO DFTSYM/’symbol_name’,ent,point,

{SCALE,scale[,RATIO,ratio] |
SIZE length,height}
[,IFERR,label:]

CREATE A DIAGRAM

DIAGM/ os filespec’,’”drawing name’
[{,COLOR,pens|
,LWIDTH,pens|,
DENS,pens}]
[{,SCALE,scale|,SIZE,x,y}]
[,IFERR,label:]

DIMENSION BY PARTS

obj = DIMBP/{obj list|comp list|obj list,comp list}

SET DIMENSION
PARAMETERS BY
DRAFTING ENTITY

DIMPAR/[DRAW,]ent

MINIMUM DISTANCE

DISTF({paint|line},{line | point})

DELETE ATTRIBUTE

DLATT/{obj list| ALL| PART |’name’}, {title

list| ALL}[,data_type]

READ HEADER NEXT
OF FILE IN DIRECTORY

DNEXT/IFEND,label:[,IFERR,label:]

PROGRAM LOOP

DO/label:,index variable,start,end[,increment]

OPEN DIRECTORY

DOPEN][/filespec’][,IFERR,label:]

DOT PRODUCT OF DOTF(A,B)

TWO VECTORS

DRAW ON/OFF DRAW/{ON | OFF | ALL | obj list}
D-10 GRIP Fundamentals OEDS

Student Guide

All Rights Reserved

Unigraphics NX 2

Statement Format Summary

Function Statement Format
CREATE A DRAWING DRAWC/ drawing name’,
[MMETER,]{height,width|n}
[,IFERR,label:]
DELETE A DRAWING DRAWD/ drawing name’[,IFERR,label:]

EDIT A DRAWING (Add
View)

DRAWE/[’drawing name’,]ADD,’view name’,x,y
[,IFERR,label:]

(Relocate View)

DRAWE/[’drawing name’,]
MOVE, view name’,x,y
[,IFERR,label:]

(Remove View)

DRAWE/[’drawing name’,]JREMOVE,’view name’
[,IFERR,label:]

(Change DWG Size)

DRAWE/[’drawing name’,]SIZE,
[{INCHES | MMETER},] {height,width|n}
[,IFERR,label:]

(Change View Status)

DRAWE/[’drawing name’,]DVSTAT, viewname’,
{REF |ACTIVE}
[,IFERR,label:]

RENAME A DRAWING

DRAWN/['old drawing name’,]
‘'new drawing name’
[,IFERR,label:]

VERIFY DRAWING

DRAWV/['drawing name’,]
[{PLOT |DVSTAT,numlist,},]
variable list
[,IFERR,label:]

DEFINE VIEW

num = DVIEW/coordinate system

CREATE EDGE
VERTEX POINTS

obj list = EDGVER/ent[,CNT,c][,IFERR,label:]

EDIT ROW OF PARTS
LIST

EDITPL/{kv1,kv2,kv3|ent id}
[,num list,string list]
[LQTY[{,INT|,STR}],quantity]
[,IFERR,label:]

©EDS GRIP Fundamentals

All Rights Reserved Student Guide D-11

S
75
/ /
S

S
5"
/ /
S

Statement Format Summary

Function

Statement Format

ADD TO OR REMOVE

EDRFST/ reference set name’,

FROM A REFERENCE {APPEND | DELETEY}, obj list

SET

EDIT EDTXHT/ent,{BND,{ADD,entlist| REMOVE,
CROSSHATCHING entlist| REPLAC,ent,boundary} | XHATCH
PARAMETERS [,LFNAME, filename’][,UTIL],

{material number|’material name’},
angle,distance | AFILL,fill number,
angle,scale}[,IFERR,label:]

PRINT AT THE TOP OF
THE NEXT PAGE

num = EJECT/{PRINT|WINDOW}

ELLIPSE

obj = ELLIPS/point,semimajor,semiminor
[,ATANGL,angle]
[, START,angle,END,angle]

DECLARE ENTITY
VARIABLE

ENTITY/name[(dim1[,dim2[,dim3]])]
[,name[(dim1[,dim2[,dim3]])]]+

SOLID CONTAINMENT

num = ENCONT/ent1,ent2,[,IFERR,label:]

FUNCTION arg

ACCESS string = ENVVAR/'variable’{,ASK|,SET, value’}
ENVIRONMENT [,IFERR,label:]

VARIABLES

VERIFY ATTRIBUTE num = ENUM/ name’

NAME

EXPONENTIAL EXPF(arg)

CREATE EXPRESSION

EXPCRE/exp_string[,IFERR,LABEL:]

DELETE EXPRESSION

EXPDEL/name_string[,IFERR,LABEL:]

EDIT EXPRESSION

EXPEDT/exp_string_list[,IFERR,LABEL:]

EVALUATE
EXPRESSION

num = EXPEVL/name_string[,IFERR,LABEL:]

EXPORT EXPRESSION

EXPEXP/file_string[,IFERR,LABEL:]

IMPORT EXPRESSION

EXPIMP/file_string[,REPLAC][,IFERR,LABEL:]

D-12 GRIP Fundamentals

Student Guide

©EDS
All Rights Reserved

Unigraphics NX 2

Statement Format Summary

Function Statement Format

LIST FULL exp string = EXPLIS/name_string[,IFERR,LABEL:]

EXPRESSION

RENAME EXPRESSION EXPRNM/name_string,TO,name_string
[,IFERR,LABEL:]

SUBDIVIDE FACE obj list = FACDIV/ent1,WITH,ent2[,CNT,c]
[,IFERR,label:]

MOVE FACE FACMOV/ent, TRIM,HEIGHT,h[,AXIS,i,j k]
[,IFERR,label:]

APPEND FILE TO FAPEND/TXTfile#, filespec’[,IFERR,label:]

CURRENT FILE

CREATE NEW obj = FCOMP/filespec’[,’component name’]

COMPONENT [,REF, reference set name’][,CSYS,csys]
[,ORIGIN,pt],objlist[,IFERR,label:]

COPY FILE FCOPY/'source filespec’,’destination filespec’
[,IFERR,label:]

DELETE FILE FDEL/filespec’[,IFERR,label:]

RETRIEVE A FILE

FETCH/{PART, filespec’ | TXT file#, filespec’}
[IFERR, label:]

MODIFY FILE HEADER

FHMOD/ filespec’,[FNAME, filename’]
[STATUS,status][,DESCR,’description’]
[,CAREA, customer area’]
[,IFERR,label:]

READ FILE HEADER

FHREAD/filespec’[,IFERR,label:]

FILE

FILE/{PART | TXT[file#][,LINNO]}
[, filespec’][,IFERR,label:]

FILLET (Two Entities,
Center Point)

obj = FILLET/ent1,ent2, CENTER,point, RADIUS,r
[LNOTRIM][,IFERR,label:]

(Three Entities)

obj = FILLET/[{IN|OUT|TANTO}],entd,
[{IN|OUT|TANTO}] ent2,,
[{IN|OUT|TANTO}],ent3,
,CENTER,point[, NOTRIM]
[IFERR, label:]

©EDS GRIP Fundamentals

All Rights Reserved Student Guide D-13

S
75
/ /
S

Statement Format Summary

Function Statement Format

(Two Entities, Positional | obj = FILLET/”PMOD3”,line1,”PMOD3” line2,
Modifiers) RADIUS,r[,NOTRIM][,IFERR,label:]

FILLET SURFACE obj = FILSRF/surf1,surf2,point[, TOLER,l]
,RADIUS,r1[,r2]
[LINEAR|SSHAPE]
[,Isurf1,Ipoint1,Isurf2,Ipoint2]

[, VECT,x,y,z][,RESULT,result]
[,IFERR,label:]

MOVE FILE FMOVE/’source filespec’,’destination directory’
[{,UPDATE |NEWEST}]
[{,VERIFY|DELETE}]

[IFERR, label:]
FORM—POSITIONAL obj = FMPOS/(origin),
TOLERANCE {NONE’{EXT,{1]2|3]4},

line| LEADER,[{LEFT|RIGHT},]
{obj1[,VIEW, View Name]

[,(origin)] | (origin)}}[, TRIANG]}
{,SYMBOL,number |’text’ | NEXTL} +

FORMAT FNDSTR('object string’,’search string’,pos)
SET ENTITY FONT FONT/{SOLID | DASH|PHANTM | CENTER}
FONT DEFINITION string = FONTDF/
{INQUIR|UGDFLT | CUSTDF | file spec’}
[IFERR,label:]
, LIST ALL FPRINT/file#[,LINNO][,USING, image string’
27 [Il g gl
§ D / FOLDED RADIUS obj = FRDIM/(origin),arc,[VIEW, View Name’,]
S [{ENDOF |CENTER|TANTO},] "PMOD3”

,0bj[,VIEW, View Name’][,ANGLE,angle]
X,Y[,Dim. text][,APPEND,App. text]

CONVERT REAL NO. FSTR(n)
TO CHARACTER

STRING

CONVERT REAL NO. FSTRL(n)

TO CHARACTER
STRING (More Than 8
Chars)

©EDS . .
D-14 GRIP Fundamentals All Rights Reserved Unigraphics NX 2
Student Guide

Statement Format Summary

Function

Statement Format

CLOSE A FILE

FTERM/{PART[options] | TXTfile#}[,IFERR,label:]

GENERAL CONIC (Five
Points)

obj = GCONIC/point1,point2,point3,point4,point5

(Four Points, One
Slope)

obj = GCONIC/point1,point2,point3,point4,
VECT\x,y,z

(Three Points, Two
Slopes)

obj = GCONIC/point1,point2,point3,VECT
x1,y1,z1,x2,y2,22

(Three Points, Anchor
Point)

obj = GCONIC/point1,point2,point3,
ANCHOR,point4

(Two Points, Anchor
Point, Rho Value)

obj = GCONIC/point1,point2, ANCHOR,point3,rho

SIX COEFFECIENTS

obj = GCONIC/number list

GENERATE DRAFTING
ENTITIES TO
CURRENT SETTINGS

GENDIM/obj list

GET LINE NUMBER

GETL(file#)

INDICATE GENERIC
POINT

GPOS/’message’,x—coord,y—coord,z—coord
,response

GRIP ARGUMENTS

GRARGS/parameter list,[,IFERR,label:]

UPDATE GRID DISPLAY

GRDDSP/[{ON|OFF}]

DETECT UNDECLARED | GRIPSW/DECLRV

VARIABLES

GROUP obj = GROUP/obj list

EDIT A GROUP GRPEDT/{ADD{group entity |group name|’group name’} |

REMOVE}entlist

STOP PROGRAM
EXECUTION

HALT

CROSSHATCHING

obj = HATCH/{XHATCH | AFILL},obj list
[VIEW, View Name'][,IFERR,label:]

©EDS GRIP Fundamentals

All Rights Reserved Student Guide D-15

S
75
/ /
S

Statement Format Summary

Function Statement Format
HOLE DIMENSION obj = HDIM/(origin),arc[,VIEW, View Name’]
[,Dim. text][,APPEND,App. text]
HYPERBOLA obj = HYPERB/point,semitransverse,semiconjugate
,dymin,dymax[,ATANGL,angle]
SELECT OBJECTS IDENT/’'message’[,SCOPE,{WORK|ASSY |REF}]
,0bj list[,CNT,count]

[,CURSOR,x—coord,y—coord,z—coord]
[LMEMBER,{ON|OFF}],response

ID SYMBOL obj = IDSYM/{CIR|DCIRC|SQR|DSQR|HEX|
DHEX|TRIUP | TRIDWN | DATUM | OBLNG?},
(origin),{NONE | {ARROW|DOT}
[,{LEFT|RIGHT}][,0bj]

[LVIEW,View Name’]

[,(origin)]}, text’[,’'text’]

ARITHMETIC IF IF/numerical expression,[labeli1:],[label2:],[label3:]
LOGICAL IF IF/logical expression,statement
BLOCK IF IFTHEN/e1
block1
[ELSEIF/e2
block2] . ..
[ELSE
block3]
ENDIF

| INITIALIZE DATA BASE | INEXTE[/ALL]
/24 CYCLING
/D 7

/

Y INITIALIZE DATA BASE | INEXTN/{type no.|type GPA}[,subtype]
NON—GEOMETRIC [IFERR, label:]

ENTITY CYLCING

SET CROSSHATCHING | INHAT/{XHATCH[,FNAME,filename’][,UTIL],

PARAMETERS {material number| ’material name’},
angle1,distance | AFILL fill#,angle2,scale}
[,IFERR,label:]

INTERSECT SOLIDS obj list = INTERS/ent,WITH,entlist[,CNT,c]
[,IFERR,label:]

©EDS . .
D-16 GRIP Fundamentals All Rights Reserved Unigraphics NX 2
Student Guide

Statement Format Summary

Function Statement Format
INTEGER PORTION OF INTF(arg)
THE ARGUMENT
SOLIDS INTFER/ent,WITH,entlist, RESULT,numlist,
INTERFERENCE IFERR,label:
CHECKING
INTERSECTION obj = INTSEC/surf1, WITH,surf2 [, TOLER,tI]
CURVE [,Isurf1,lpoint1,lsurf2,Ipoint2[,VECT,x,y,z]]

[,IFERR,label:]

ISOPARAMETRIC obj = ISOCRV/obj{,UDIR|VDIR},num1

CURVE ON FACE

[,TOLER,num2][,CNT,num3][,IFERR,label]

CONVERT INTEGER
TO CHARACTER
STRING

ISTR(n)

CONVERT INTEGER
TO CHARACTER
STRING (More Than 8
Chars)

ISTRL(n)

UNCONDITIONAL
BRANCHING

JUMP/label:

CONDITIONAL
BRANCHING

JUMP/label: +,[expression]

PROGRAM LABEL

LABEL:statement

LABEL

obj = LABEL/[{LEFT|RIGHT},](origin),
{obj[,VIEW, View Name’]
[,(origin)] | (origin) }'text’[,’text’] +

CREATE A LAYOUT
(Single View)

LAYC/layout name’,’'view name’
[LWORKI,{AUTO | SCALE,s}]]
[,IFERR,label:]

(Side by Side Views)

LAYC/layout name’,SIDE,’view 1 name’
,view 2 name’
[LWORKI,{AUTO | SCALE,s}]]
[,IFERR,label:]

©EDS GRIP Fundamentals
Student Guide

All Rights Reserved

D-17

S
75
/ /
S

S
b
/ /
S

Statement Format Summary

Function

Statement Format

(Top and Bottom Views)

LAYC/’layout name’,TOP
,view 1 name’
,view 2 name’
[LWORKI,{AUTO | SCALE,s}]]
[,IFERR,label:]

(Four Views)

LAYC/layout name’

,view 1 name’

,view 2 name’

,view 3 name’
,view 4 name’
[LWORKI,{AUTO | SCALE,s}]]

[IFERR, label:]

(Six Views)

LAYC/layout name’
,view 1 name’
,view 2 name’

,view 3 name’

,view 4 name’

,view 5 name’’

,view 6 name’

[LWORKI,{AUTO | SCALE,s}]]

[IFERR, label:]

DELETE A LAYOUT

LAYD/layout name’
[,IFERR,label:]

EDIT A LAYOUT (Add a
View)

LAYE/[layout name’,]
ADD,’view name’,X1,Y1,X2,Y2
[,SAVE[,’new layout name’]]
[,IFERR,label:]

(Replace a View)

LAYE/['layout name’,]JREPL
,old view name’
,’New view name’
[,SAVE[,’new layout name’]]
[,IFERR,label:]

(Remove a View)

LAYE/[layout name’,]REMOVE,’view name’
[,SAVE[,’new layout name’]]
[,IFERR,label:]

(Save a layout)

LAYE/[layout name’,]SAVE[, new layout name’]

[IFERR,label:]

D-18 GRIP Fundamentals

Student Guide

©EDS
All Rights Reserved

Unigraphics NX 2

Statement Format Summary

Function

Statement Format

LAYER CONTROL

LAYER/[WORK,n],
[ACTIVE,{REST |layer list[,CAT, cat’]}],
[REF,{REST |layer list[,CAT, cat’]}],
[INACT,{REST |layer list[,CAT, cat']}]

RENAME A LAYOUT LAYN/[old layout name’,]’new layout name’
[,IFERR,label:]

RETRIEVE A LAYOUT LAYR/ layout name’[,{AUTO | SCALE,s}]
[,IFERR,label:]

VERIFY LAYOUT LAYV/[’layout name’,]variable list
[,IFERR,label:]

DELETEALINEIN A LDEL/file#[,START,start line#,END,end line#]

TEXT FILE

HORIZONTAL AND obj = LDIM/{HORIZ|VERT},(origin),

VERTICAL [{ENDOF |CENTER|TANTO},]
"PMOD3”,0bj1,
[VIEW, View Name’,]
[{ENDOF |CENTER|TANTO},]
"PMOD3”,0bj2[,VIEW, View Name’]
[,Dim. text][,APPEND,App. text]
[,OBLIQ, Angle]

PARALLEL obj = LDIM/PARLEL, (origin),
[{ENDOF |CENTER|TANTO},]”"PMOD3”,
obj1,[VIEW, View Name’,]
[{ENDOF |CENTER|TANTO},]
"PMOD3”,0bj2[,VIEW, View Name’]
[,Dim. text][,APPEND,App. text]

PERPENDICULAR obj = LDIM/PERP,(origin),baseline,

[{ENDOF |CENTER|TANTO},]”"PMOD3”,
obj[,VIEW, View Name’][,Dim. text]
[,APPEND,App. text]

NUMBER OF CHARS IN

A STRING

LENF(’string’)

LINE (Parallel At A Dist)

obj = LINE/PARLELline,”PMODS3”,offset

(Parl/Perp To Line,
TAngent To Curve)

obj = LINE/{PARLEL |PERPTQ} line,
{"PMODg3” | point}, TANTO,curve

©EDS
Al Rights Reserved gﬁgﬂfg‘f&?ma“ D-19

S
75
/ /
S

S
5"
/ /
S

Statement Format Summary

Function

Statement Format

(Thru A Pt, At An Angle)

obj = LINE/point, ATANGL,angle

(Point, Tangent To A
Curve)

obj = LINE/point1,{LEFT|RIGHT | point2},
TANTO,curve

(Tangent To Two
Curves)

obj = LINE/{LEFT|RIGHT | point}, TANTO,curve1
,{LEFT|RIGHT | point}, TANTO,curve2

(Thru A Point, Parl/Perp
To A Line)

obj = LINE/point,{PARLEL |PERPTO} line

(Thru A Point, Perp To A
Curve)

obj = LINE/point1,point2, PERPTO,curve

(Between Two Existing
Curves)

obj = LINE/point1,point2

(Between Two Specified
Points)

obj = LINE/x1,y1[,z1],x2,y2[,z2]

NATURAL LOGARITHM
OF THE ARGUMENT

LOGF(arg)

LISTING DEVICE

LSTDEV/{CRT[,LPT|OS]|
LPT|OS|NULL}
[, 'filename’][,REPL]

REPOSITION A
COORDINATE

pos = MAP/pos1,FROM,
{csys1,TO,csys2|
member_view_name,TO,parent_drawing_name}

CLASS SELECTION

MASK/{ALL|NONE| [OMIT,],ent type list}

TRANSLATE matrix = MATRIX/TRANSL,dx,dy,dz

SCALE matrix = MATRIX/SCALE{,s|,xc,yc,zc}

ROTATE matrix = MATRIX/{XYROT|YZROT|ZXROT},angle
MIRROR matrix = MATRIX/MIRROR,{line | plane}
MULTIPLE matrix = MATRIX/matrix1,matrix2

TRANSFORMS

(Concatenation)

D-20 GRIP Fundamentals

Student Guide

©EDS : .
All Rights Reserved Unigraphics NX 2

Statement Format Summary

Function Statement Format
MAXIMUM VALUE IN MAXF(arg[,arg] +)
THE ARGUMENT LIST
CHOOSE MULTIPLE MCHOOS/primary string

OPTIONS

,menu options
,response array
[L,ALTACT,’message’]
,response variable

WRITE TO MESSAGE
MONITOR

MESSG/[TEMP]string list

MINIMUM VALUE IN
THE ARGUMENT LIST

MINF(arg[,arg] +)

REMAINDER OF THE
DIVISION arg/mod

MODF(arg,mod)

REPLACE COLOR
TABLE

NEWCTE/filename’

CYCLE TO NEXT
ENTITY

obj = NEXTE/IFEND,label:

CYCLE TO NEXT
NON—-GEOMETRIC
ENTITY

string = NEXTN/IFEND,label1:[,IFERR,label2:]

NOTE

obj = NOTE/(origin),{scratch file #1
[,IFERR,label:] | text’[,’'text’]+}

DECLARE NUMERICAL
VARIABLE

NUMBER/name(dim1[,dim2[,dim3]])
[,name(dim1[,dim2[,dim3]])] +

ENTITY INFORMATION

OBTAIN/obj list,(variable list)

ORDINATE DIMENSION

obj = ODIM/(origin),{margin obijid | {HORIZ|VERT}
,origin objid}
,[{ENDOF|CENTER|TANTQO},]”’PMOD3”
,0bj[,VIEW, View Name’]
[[DOGLEG,angle,distance][,Dim. text]
[,APPEND,App. text][,IFERR,label:]

©EDS
All Rights Reserved gﬁgﬂfg‘f&?ma“

D-21

S
75
/ /
S

S
5"
/ /
S

Statement Format Summary

Function Statement Format
OFFSET CURVES obj list = OFFCRV/obj list,{dist| height,ang}

ref point[, STEPN1][{,EXT[,n2] |,FILLET}]
[,GROUP]

OFFSET BODY

obj = OFFSRF/ent,dis
[,TOLER,edge curve tolerance]

ORDINATE ORIGIN
DIMENSION

obj = OODIM/[{ENDOF | CENTER},]”"PMODS3”,0b)j
[,VIEW,View Name’][,QUAD,{quad_no}]
[,ARROWS][,NAME, name text’]
[LSYMBOL,{symbol _no}][,IFERR,label:]

ORDINATE MARGIN

obj = OOMGN/{HORIZ|VERT},obj
,[VIEW,View Name’,]
{line[,VIEW, View Name’]
| xpos,ypos,xdir,ydir}[,offset distance]
[,IFERR,label:

PARABOLA

obj = PARABO/point,focal length
,dymin,dymax[,ATANGL,angle]

ENTER PARAMETERS

PARAM/'message’{, option’[,INT],variable} +
[L,ALTACT,’message’],response

EXPAND A PATTERN

obj = PATEXP/ent[,GROUP][,LAYER][,NOVIEW]
[,PLMODS,value]
[,IFERR,label:]

ASK/SET WORK,
DISPLAYED, OR
LOADED PARTS

string list = PARTOP/{ASK,{work|dsplay |all} | SET,
{work|dsplay},string}[,IFERR,LABEL:]

QUERY PART LOAD
STATUS

num = PARTST/part_name’

RETRIEVE A PATTERN

obj = PATRET/file name’[,’pattern name’]
[,{matrix|csys,scale}][,AUTO]
[,IFERR,label:]

UPDATE A PATTERN

PATUPD/ent[,IFERR,label:]

LIST PATTERN
RETRIEVAL ERRORS

PATLER/

D-22 GRIP Fundamentals
Student Guide

©EDS : .
All Rights Reserved Unigraphics NX 2

Statement Format Summary

Function

Statement Format

MODIFY PART FILE
HEADER

PHMOD/[filename’][,STATUS,status]
[,LDESCR, description’]
[,CAREA, customer area’]
[,IFERR,label:]

READ PART FILE
HEADER

PHREAD/[filename’]{,STATUS|,status] |
,DESCRnotes|[,description] |
,CAREA[,customer area] |
,MCHFMT[,machine format] |
,RELNO[,release num]}
[,IFERR,label:]

PLANE (Plane Of An
Arc Or Conic)

obj = PLANE/ent

(Two Lines)

obj = PLANE/line1,line2

(Parallel At a Distance)

obj = PLANE/PARLEL,plane,point,d

(Parallel To a Plane,
Thru a Point)

obj = PLANE/PARLEL,plane, THRU,point

(Perpendicular To a
Curve, At a Point)

obj = PLANE/PERPTO,curve, THRU,point

(Perpendicular To a
Plane, Thru a Line)

obj = PLANE/PERPTO,plane, THRU,line

(Three Points)

obj = PLANE/point1,point2,point3

(Principal Plane)

obj = PLANE/{XYPLANI[,Z—coord] |
YZPLAN[,X—coord] |
XZPLAN[,Y—coord]}[,csys]

PLACE SYMBOL

obj = PLCSYM/’symbol_name’,point,angle,
{SCALE,scale
[,RATIOratio] |
SIZE length,height}
[,IFERR,label:]

©EDS
All Rights Reserved gﬁgﬂfg‘f&?ma“

S
75
/ /
S

S
5"
/ /
S

Statement Format Summary

Function

Statement Format

SET PARTS LIST MODE

SETTINGS

PLMODE/sort field pos,sort mode,callout mode
,box mode,header mode
,update ID sym mode
Jine space factor
[, SECSRT,value1,value2]
[,COLUMN,value1,value2,value3]
[RPMODE,value][,SKIPVL,value]
[,FROZEN,value][,IFERR,label:]

CREATE OR REGEN.
PARTS LIST NOTE

obj = PLNOTE/[xc,yc][,IFERR,label:]

PLOT

num = PLOT/{’plotter ID’| DISPL},’ drawing name’
[{,COLOR|LWIDTH |DENS},pen list]
[,JOB,’ jobname’][,SCALE,s][,ANGLE,a]
[LMEDIA,m][,COPIES,c][,ORIGIN,x,y]
[,STARTx,y][,PAUSE,’message’]
[PLTTOL,1][,IFERR,label:]

SAVES/APPENDS A
DRAWING TO A PLOT
FILE

num = PLTSAV/ plotter ID’,’drawing name’
[{,COLOR|LWIDTH|DENS},pen list]
[,SCALE,s][,ANGLE,a]
[L,ORIGIN,x,y][,START,x,y]
[PLTTOL,1][,IFERR,label:]

UPDATES THE
PLOTTER DRAWING
DEFAULTS

num = PLTUPD/ plotter ID’,’drawing name’
[{,COLOR|LWIDTH|DENS},pen list]
[,SCALE,s][,ANGLE,a][,MEDIA,m]
[,COPIES,c][,ORIGIN,x,y][,STARTX,y]
[LIFERR,label:]

SUBMITS A PLOT FILE

num = PLTSUB/ plotter ID’[,JOB,’ jobname’]
[LMEDIA,m][,COPIES,c]
[,PAUSE, message’][,IFERR,label:]

DELETES PLOT FILE

num = PLTDEL/

LIST PARTS LIST

PLOUT/[IFERR,label:]

POINT (Center Of
Circle)

obj = POINT/CENTER,circle

(Position On Arc)

obj = POINT/circle, ATANGL,angle

(End Point)

obj = POINT/ENDOF,”PMOD3”,ent

D-24 GRIP Fundamentals

Student Guide

©EDS : .
All Rights Reserved Unigraphics NX 2

Statement Format Summary

Function

Statement Format

(Intersection Point)

obj = POINT/[{"PMOD2” | point}],INTOF,ent1,ent2
[,IFERR,label:]

(Offset Point)

obj = POINT/point,DELTA,dx,dy,dz

(Polar Offset Point)

obj = POINT/point,POLAR,dist,angle

(Three Dimensional
Offset Vector)

obj = POINT/point,VECT,line,”PMODS3”,dist

(Coordinates)

obj = POINT/x,y[,z]

(Pattern Point)

obj = POINT/x,y,[z,]PATPNT

INDICATE SCREEN
POSITION POINT

POS/' message’,x—coord,y—coord,z—coord
,response

LIST PRINT/[USING, image string’,]data list
PROJECT obj list = PROJ/obj list1,0ON,obj list2[, TOLERt]

POINTS/CURVES

[,VECTyvect]
[[LASSOC [,0bjal] | [MOVE][,TRACRV]]

SUB ROUTINE
HEADER

PROC[/dummy argument list]

ADD AN EXISTING

obj = RCOMP/filespec’[,’component name’]

PART AS A [REF,’reference set name’]
COMPONENT [,csys][,LAYER]
[,IFERR,label:]
RADIUS obj = RDIM/(origin),arc[,VIEW, View Name’]
[,Dim. text][,APPEND,App. text]
READ TEXT READ/file#[,LINNO,line#][,USING, image string’]

[,IFEND,label:]
[,IFERR,label:,],variable list

COUNT REFERENCE
SET MEMBERS

num = REFCNT/[PART,part_name,]
reference_set _name[,IFERR,label:]

CYCLE MEMBERS OF
A REFERENCE SET

obj = REFMEM/[PART, part_name’,]
'reference_set_name’
,index[,IFERR,label:]

©EDS GRIP Fundamentals

All Rights Reserved Student Guide

D-25

S
75
/ /
S

S
5"
/ /
S

Statement Format Summary

Function

Statement Format

RETRIEVE
EXPRESSION VALUE

REGF ('expression name’)

OBTAIN RELATIVE
DISTANCE BETWEEN
TWO ENTITIES

num list = RELDST/[MIN,]
ent1[x1,y1[,z1]]
,ent2[,x2,y2[,z2]]

REMOVE ROW FROM
PARTS LIST

REMVPL/{kv1,kv2,kv3 | obj list}
[IFERR, label:]

RENAME SCRATCH

RENAME/file#,'