UNIGRAPHICS

OPEN API
STUDENT GUIDE

February 2004
MT13110 — Unigraphics NX 2

EDS Inc.

Proprietary & Restricted Rights Notices

Copyright

Proprietary right of Unigraphics Solutions Inc., its subcontractors, or its suppliers are included in this
software, in the data, documentation, or firmware related thereto, and in information disclosed
therein. Neither this software, regardless of the form in which it exists, nor such data, information, or
firmware may be used or disclosed to others for any purpose except as specifically authorized in writing
by Unigraphics Solutions Inc. Recipient by accepting this document or utilizing this software agrees
that neither this document nor the information disclosed herein nor any part thereof shall be
reproduced or transferred to other documents or used or disclosed to others for manufacturing or any
other purpose except as specifically authorized in writing by Unigraphics Solutions Inc.

©2003 Electronic Data Systems Corporation. All rights reserved.
Restricted Rights Legend

The commercial computer software and related documentation are provided with restricted rights.
Use, duplication or disclosure by the U.S. Government is subject to the protections and restrictions as
set forth in the Unigraphics Solutions Inc. commercial license for the software and/or documentation
as prescribed in DOD FAR 227-7202-3(a), or for Civilian Agencies, in FAR 27.404(b)(2)(i), and any
successor or similar regulation, as applicable. Unigraphics Solutions Inc., 10824 Hope Street, Cypress,
CA 90630.

Warranties and Liabilities

All warranties and limitations thereof given by Unigraphics Solutions Inc. are set forth in the license
agreement under which the software and/or documentation were provided. Nothing contained within
or implied by the language of this document shall be considered to be a modification of such warranties.

The information and the software that are the subject of this document are subject to change without
notice and should not be considered commitments by Unigraphics Solutions Inc.. Unigraphics
Solutions Inc. assumes no responsibility for any errors that may be contained within this document.

The software discussed within this document is furnished under separate license agreement and is
subject to use only in accordance with the licensing terms and conditions contained therein.

Trademarks

EDS, the EDS logo, UNIGRAPHICS SOLUTIONS®, UNIGRAPHICS®, GRIP®, PARASOLID®,
UG®, UG/...®, UG SOLUTIONS®, iMAN® are trademarks or registered trademarks of Electronic
Data Systems Corporation or its subsidiaries. All other logos or trademarks used herein are the
property of their respective owners.

Open API Student Guide Publication History:

Version15.0 ... i February 1999
Version16.0 i February 2000
Version17.0 ... i May 2001
Version18.0l March 2002
Unigraphics NX oo, February 2003

Unigraphics NX2 ..., February 2004

Table of Contents

Table of Contents

Introductioncciiiiiiiiiiirirernensacacacananans -1
Howto UsethisBook o it -1
What is Open API? -2
Two Formsof Open API -2
Open API Applicationscociviiiiiininen... -3
Some useful applications using the Open API include: ... -3
Course ODJECtIVES ... vvvt et -3
Some of the objectives for the Open API course include: . -3
Open API Compiling and Linkingccciiiiininn.. 1-1
The UFMENU Utility i, 1-2
How to Invoke UFMENU 1-2
Bdit ... 1-3
Compile 1-3
Compile Errors ... i 1-5
Link ... 1-5
Link Errors 1-6
Run ... 1-6
Change Directoryt 1-7
List Directorycouuiiin i 1-7
Non—menu ACtIVILIES vovvn it 1-7
Makefile Overview 1-8
Activity: Compile and Link example.c 1-10
Error Checking i 1-11
Programming in Windows 1-12
A Second Method to compile and link in Windows 1-18
UserInteractionciviiivirninnnnnnnncncnnanaeess 2=1
Overall Class Projectco ... 2-3
General Open API Program Format 2-5
License Check In/Check Out Routines 2—6
Calculator Entry Point, calculator.c 2-17
Code Discussion: calculator.c......................... 2-7
Memory and Message Routines 2-9
Invocation Macro ... 2-9
Part Routines 2—-11

Open API
©EDS)
All Rights Reserved Student Guide

Table of Contents

Menu Routines i
Code discussion: calc part.c........ ...,
Activity: Check Session for Open Part Files
User InterfaceStyler
Invoking the Styler i
Styler Menus
User Interface Styler Resource Editor
Object Browserciiuiiiiiiniininnen...
Save Dialog
Open API routines for the User Interface Styler
Querying Attributes i
Setting Attributes i
Activity: User Interface Styler for Calculator Data
UI Routines for Object Selection

Assembliescoiiiiiiiiiiiii i i i ittt
Top—Down Design,
Assembly Terminology and Concepts
Sample Assembly i
Coordinate Systemst
Assembly Routines
Layer Routines,
Object Routinescooiiiiiiniiin ...
Code Discussion: calc_assem.cc..coovu....
Creatinga Componentcoviienienen....
Activity: Create Assembly Parts for Calculator
Report Object Tags, Types, and Subtypes

EXPressionsccietietiieeiiteerensenssnscesssnssnsans
Expression Definition o i i
Conditional Expressionsc.coiiiiinen....
Expression Routines
Expressions for the calculator

Code Discussion: calc_ expr.cc.ooveinen ...
Activity: Create calc_ exprcoiiiiiiiinenaan..

Modelingcciiiiiiiniinnnresnncsenscsnnscsnnssnnnas
Geometry Creation in Contextc..c....
Model list routinest ..

Code Discussion: calc model.c
Activity: Create Routine calc model
Calculator TopHalf

il

Open API ©EDS
Student Guide All Rights Reserved

[I 1
O 00 AN e

A L L D -llk-lk-lk-lk-lk-lk-h

I
N B N

Unigraphics NX 2

Table of Contents

Model Creation Routines 5-9
Model inquiry routinesc.ciiiiinen.... 5-10
Object Name Routines, 5-11
Code Discussion: calc_model top.c 5-12
Activity: Create the Calculator Top....................... 5-17
Code Discussion: calc_model top holes.c 5-18
Activity: Add Holes to the Calculator Top 5-21
Calculator Bottom Half 5-22
Code Discussion: calc_model _bottom.c 5-22
Calculator Button o i 5-23
Code Discussion: calc_model button.c................. 5-24
Activity: Create Bottom Half and Button Geometry 5=-25
Code Discussion: calc_comp_array.c 5-26
Activity: Create Routine calc comp array................. 5=-27
Dimensioningcciiiiiieiiitntcertcscntcstncsnnsas 6-1
Dimension and Drafting routines 6-2
calc dimension.Co, 6-3
Code Discussion: calc_dimension top.c 6—4
Code Discussion: calc_dimension_top_edges.c 6—6
calc_dimension bottom.c 6-9
Activity: Create Top Dimensions 6—-10
WCS control routinesoiiiiiiii... 6—12
View/Layout control routines 6—13
Code Discussion: calc_dimension_button.c 6—14

UZ St WCS O VIEW.C v vvvvtn et e eeeieeenns 6—15
calc_dimension _button edges.c 6—15
Activity: Create Button Dimensions 6—16
Drawingsc.cciiiiiiniienereeescsesscsesscsnsssnnsas 7-1
Member View and Drawing Name Conventions 7-1
Drawing routines iiiiiiinininenn.. 7-3
Importing Parts 7-4
Code Discussion: calc_drawing.c 7-4
Code Discussion: calc_drawing views.C 7—6
Activity: Create a Drawing 7-8
External Open APIttt renecnocannansans 8-1
External Open API Programs 8-2
Attribute Routines i 8-3
Adding Attributes to the Calculator Parts 8-3
CalCK.C ot e 8§—4

GEDS Stadent Guide iii

All Rights Reserved

Table of Contents

Code Discussion: calcx.Ccoviviiin i 8-=5

Activity: Attribute and External Open API 8§-9
Plottingcoiiiiiiiiiiiiiiiiientencsnsonscescancenneas A=1
Plotting in the Open API A-1

Plot Routines A-1

Code Discussion: calc_plot.c A-1

Activity: Generating Drawing Plots A-3
GloSsaryoviiiiiiiiiiiiiiitinttntsnssescescaasassesss GL=1
Index.....coiiiiiiiiiiiiiiiiiiirieirnensasncnnneneaesss IN=1

iv Open API ©EDS Unigraphics NX 2

Student Guide All Rights Reserved

Introduction

Introduction

This chapter introduces the Open API overall concepts, as well as the course
layout. It also briefly details the two types of Open API programs, internal and
external.

How to Use this Book

This Student Guide is intended as a classroom workbook. It is not a complete
reference manual. For the full reference material, please refer to the API
Reference Guide and the Open API Programmer’s Guide.

For the API Reference Guide, choose Help — Documentation — Open API
Reference Guide. (Notice that the Open C+ + Programmer’s Guide is in this
same location.) You may also open this file and bookmark it in your browser:
${UGII_BASE_DIR}/ugdoc/ugopen_doc/main.html.

The Open API Programer’s Guide is under the Open heading in the left
column of NX Help.

Other course concepts are detailed in the Menuscript Users Guide and the
User Interface Styler Help.

This Student Guide is arranged as a series of lessons. The routines created in
each lesson are portions of an overall program. The program automates the
design of a hand held calculator. Each lesson progresses the discussion of the
necessary Unigraphics concepts and introduces the Open API tools used to
construct the routines for the lesson activities. The Student Guide contains
code templates and solutions for the activities.

©EDS Open API -1
All Rights Reserved Student Guide

Introduction

What is Open API?

The Open APl is a toolkit of C language callable routines for application
programmers to write programs that work directly with Unigraphics.
Unigraphics Solutions provides a library of C language functions, include files,
and Fortran subroutines that interface with the Unigraphics object data base
(Unigraphics Object Model).

The functions and header files can be used from C+ + code, but this is
currently beyond the scope of this course. Further information about using
Open C/C+ + programs is available in the Open API Reference and the Open
C+ + Programmers Guide, found under the directory ugdoc/ugopen+ + where
Unigraphics is installed, as file index.html.

Two Forms of Open API

Open API application programs can be developed in two forms: internal and
external programs.

An internal Open API application program is a relocatable image that runs
within the Unigraphics interactive process. Programs can be developed to
access and create geometry, analyze geometry, create and edit features, create
and edit expressions, and manage data. Routines to interact with users using
standard Unigraphics Motif widgets are provided. Access to general Motif calls
is supported within the Open API.

An external Open API application is a program that runs without displaying a
graphics window. External Open API application programs tend to be more for
data management than for geometry manipulation. External Open API
application programs can construct and edit models, where no model display is
necessary.

This training course will concentrate on using the internal Open C API, but will
also include an external Open C API example.

Open API ©EDS . .
-2 Student Guide All Rights Reserved Unigraphics NX 2

Introduction

Open API Applications

Some useful applications using the Open API include:

Geometry/Feature creation and editing

Expression creation/manipulation

Geometry Analysis

Part Standardization

File management

Data access

Family of Parts

Create and interact with User Interface Styler dialogs

Create/maintain User Defined and Smart Objects

Course Objectives

Some of the objectives for the Open API course include:

Create internal and external Open API programs using ufmenu or the
make utility to compile and link

Open, close, and save Unigraphics part files
Develop User Interfaces using the User Interface Styler
Create and edit features

Demonstrate an understanding of solid/sheet body representations in
the data model

Create and manipulate expressions
Work in context (working in assemblies)
Create dimensions and plot drawings

Learn to use Motif widgets in a Open API application program

©EDS Open API =3
All Rights Reserved Student Guide

Introduction

(This Page Intentionally Left Blank)

-4

Open API ©EDS
Student Guide All Rights Reserved

Unigraphics NX 2

Open API Compiling and Linking

Open API Compiling and Linking

Lesson 1

/S
Y ”
71 7

Y,

OBJECTIVES

Upon completion of this lesson, you will be able to:

e Invoke the ufmenu utility.

e Examine Edit, Compile, and Link options on the
ufmenu.

e Generate a makefile from a template provided by
Unigraphics.

e Compile, Link, and Run an internal User Function
program using the ufmenu utility and the
Unigraphics NX2 Open Wizard.

©EDS Open API 1—-1
All Rights Reserved Student Guide

Open API Compiling and Linking

The UFMENU Utility

7 o | | | N
71 7 Ufmenu is a utility script/command file that provides you with the ability to

7./ edit, compile, and link your Open C and C++ API programs. Ufmenu uses the
ufcomp utility to compile your programs and the uflink utility to link your
programs.

The ufmenu window also allows you to:

Run external Open API programs.

Change directories.

List the files in a directory.

e Spawn a new process.

Quit (exit) the programming environment.

NOTE Ufmenu is supported only on Unix systems. If you use
Windows, you need to use a Windows based editing and
compiling system. Please refer to the topic Programming
in Windows , at the end of this lesson.

How to Invoke UFMENU

Ufmenu is invoked when you select the OPEN API (User Function) option
from the Uniproducts Menu. After you invoke ufmenu, the User Function
Development Environment menu option displays.

1) Edit 5) change Directory

2) Compile 6) liSt directory

3) Link 7) Non—menu activities
4) Run (external user function) q) Quit

Enter option (1-7, q) [q]:

The material in this section is a basic discussion of compiling and linking. The
Open API documentation gives a complete discussion of compiling and linking
for each platform. Internal Open API programs must, on UNIX platforms, be
generated using the position independent code (PIC) compiler switch. This is
not included as a part of the standard compiler. A compiler upgrade may be
necessary to be able to generate PIC output on your code development system.

Open API ©EDS . .
1-2 Student Guide All Rights Reserved Unigraphics NX 2

Open API Compiling and Linking

The following paragraphs describe the options found on the UNIX version of
ufmenu. You can select options by entering the number of the option or by
entering the capitalized letter in each option name as it appears in the main
ufmenu. For example, to list the contents of your current directory, you can
either enter option number 6 or the letter S (liSt directory).

Edit

The edit option allows you to edit a file with the currently specified operating
system editor (for example, vi). The default editor is specified by the
UGII_EDITOR variable for UNIX. If the file does not reside in your current
directory, enter the full directory path for the file specification. You can include
the file extension (.c) or use a wildcard.

Enter option (1-7,q) [q]: 1
Enter file(s) to edit (vi) [blockl.c block2.c block3.c bounded_plane.c
testopen.c]: bounded_plane.c

Compile

The compile option invokes the C or C++ compiler which converts the
statements of your C or C+ + source file into an object file (.0). You can specify
a file template, such as *.c. This compiles all the files in your current directory
with the appropriate file extension. An ANSI compiler is strongly
recommended. An ANSI C compiler is required for C language Open API
application programs if the UG Solutions provided header files (which include
prototypes) are used.

The compiler will generate an object file for each program successfully
compiled. On UNIX platforms, the .c will be replaced by .o.

You must include the file extension for your source programs. You can compile
more than one file by delimiting your file names with a space. The compile
option automatically determines the appropriate compile options for your
platform. A list of all the files with a “.c” extension appears within square
brackets. For example:

Enter option (1-7,q) [q]: 2
Enter file(s) (separated by “”) to compile [block1.c block2.c block3.c
bounded plane.c testopen.c]: bounded plane.c

©EDS Open API 1-3
All Rights Reserved Student Guide

/S
Y ”
71 7

Y,

S
Y ”
1 7

Y,

Open API Compiling and Linking

Compiling... bounded_plane.c

Default C compile options: —c —KPIC —Xc —I. —I<path>
Change compile options (y/n) [n]: n

bounded plane.c compiled successfully.

Hit <RETURN> to continue.

The default compile option switches can be the same for both internal and
external Open API application programs. The switch for Position Independent
Code can be used for external User Function. However, if you wish to change
any of the default options, enter “y” to the prompt: “Change compile options (y/n)
[n]:”. Additional “—1” switches can be added to allow the compiler to find

Motif, X11, or other header files.

€y,

When you enter “y” to the Change Options prompt, the ufmenu script prompts
you for the mode (internal or external) and which compile options to remove. It
then prompts you for options to add to the compile command line. In the
following example, we show how to change compile options and add the —g
option to compile for debugging.

Enter option (1-7,q) [q]: 2
Enter file(s) (separated by “) to compile [block1.c block2.c block3.c
bounded plane.c testopen.c]: testopen.c blockl.c block2.c block3.c

Compiling... testopen.c block1.c block2.c block3.c

Default C compile options: —c +Z —Aa —I. —I/usr/ugs160/ugopen
Change compile options (y/n) [n]:y

Compile internal/external user function (i/e) [i]: e

Remove +Z (y/n) [n]:y

Remove —Aa (y/n) [n]:

Remove —I. (y/n) [n]:

Remove —I/usr/ugs160/ugopen (y/n) [n]:

Add new options: —g —I/userl/include

New compile options: —c —Aa —1. —I/usr/ugs160/ugopen —g
—I/userl/include

testopen.c compiled successfully.
block1.c compiled successfully.
block2.c compiled successfully.
block3.c compiled successfully.

Hit <RETURN> to continue.

Open API ©EDS . .
Student Guide All Rights Reserved Unigraphics NX 2

Open API Compiling and Linking

Compile Errors
S

If your compile should fail, ufmenu creates an error log file in the current 7
directory. The name of log file is of the form “username <pid>.complog”. On 7/
UNIX systems each compile is a different process so one complog file is created

per compilation. The script displays a message similar to the following:

block1.c did not compile. Refer to username6370.complog for error
message.

The indicated .complog file can be examined to determine the problems found
with the source code files, so that correction can be made.

Link

The link option allows the linking the object file of a primary C or C+ +
program with the object files of any subprograms which can be referenced. The
link option calls the uflink utility (refer to the Open API Reference
documentation for complete details). The main object file must reside in your
current directory. You can use a directory specification for your subroutines.
Ufmenu automatically invokes the uflink script. The following example links an
external User Function image in debug mode.

Enter option (1-7,q) [q]: 3
Link internal/external user function (i/e) [i]: e
Link a C++ image (y/n) [n]: n

Default uflink options: —m
Change uflink options (y/n) [n]:y
Add new options: —d

New uflink options: —m —d

Enter program to link => testopen
Enter any subroutines => block1.o block2.0 block3.0
Enter any libraries =>

uflink:WARNING — UGII_USERFCN variable not set.
Using libraries in <path> as a default.

Linking with: block1.o block2.0 block3.o.
/bin/cc options: —WI,—q,—E,—B,immediate,+s,—L,<path> —g
Linking... testopen for external execution.

©EDS Open API 1-5
All Rights Reserved Student Guide

S
Y ”
1 7

Y,

Open API Compiling and Linking

uflink:link SUCCESSFUL — Wed Jan 26 10:33:07 PDT 2000
Hit <RETURN> to continue.

The link step will produce an executable file if there are no errors. The file
name on UNIX platforms is the name entered at the prompt “Enter program to
link =>”. A file with the program name and a “.map” extension will also be
created. This file is used when the —m option (map) is specified as a uflink
option (see the Open API Reference manual for more details on the —m
option).

Link Errors

The link script will display a message indicating the success or failure of the link
step. A file with the program name and .errors will be created in the current
directory. It will contain the error text generated by the linker. You will not
receive errors regarding unresolved references (you may receive warnings on
some platforms). Internal and External user functions resolve all calls upon
invocation.

Run

The run option allows you to execute an external Open API application
program. The following example shows how an argument is passed to the
program (similar to invoking the program from a shell prompt with
argument(s)).

Enter option (1-7,q) [q]: 4

Enter external user function to run [testopen]:
Run debug mode (y/n) [n]: n

Enter arguments to pass to testopen []: newbox

Hit <RETURN> to continue.

The next example shows the prompts when you run in debug mode.

Enter option (1-7,q) [q]: 4

Enter external user function to run [testopen]:

Run debug mode (y/n) [n]:y

Copyright Hewlett—Packard Co. 1985,1987—1992. All Rights
Reserved.

<< << XDB Version A.09.01 HP-UX >>>>

No core file

Procedures: 4

Files: 4
testopen.c: main: 15: int units = 2;
>

Open API ©EDS

Student Guide All Rights Reserved Unigraphics NX 2

Open API Compiling and Linking

From here, you can now enter debug commands. The debugger and debugger

prompt are platform specific. 4
71
ZZ
Change Directory

The Change Directory option allows you to change the current directory by
entering a new directory pathname.

Enter option (1-7,q) [q]: 5

Current directory => /class/userfunc/test
Enter new directory [.]: /class/userfunc
New directory => /class/userfunc

List Directory

The List Directory option allows you to list the contents of the current
directory. You can specify a file template. When you choose this option, ufmenu
displays your current directory and prompts you for a template of the files to
list. The default template is to list all files. You can enter any valid wildcard
specification.

Current directory => /class/userfunc
Enter file(s) to list [*]:

Non—menu Activities

This option causes ufmenu to spawn an operating system shell as a child
process. The script prompts you for the shell type as follows:

Enter Shell Type (sh/csh/ksh) [ksh]:

The default value is the Korn shell (ksh). You can spawn a Bourne shell (sh) or
a C—shell (csh) by entering the appropriate value. For example, entering csh
will spawn a C—shell.

©EDS Open API 1-7
All Rights Reserved Student Guide

S
Y ”
1 7

Y,

Open API Compiling and Linking

Makefile Overview

The Unix make utility can be invoked from the Unix shell command line in any
window (with appropriate Unigraphics environment variables set). The
provided makefile template can be used with the make utility to compile and
link internal and external Open API programs.

The make utility checks the last modified date on specified source and
dependent files (such as header files). The make utility will regenerate an
executable program if source or dependent files have been modified.

On Unix systems (HP, SUN, Digital Unix, SGI, and AIX), a template makefile
(ufun_make_template.ksh) is provided in the ${UGII_BASE_DIR}/ugopen
directory. The template can be copied and modified to compile and link your
Open API programs. The makefile, like the ufmenu script, uses the ufcomp and
uflink scripts to compile and link Open API programs.

The template makefile can be customized to compile and link the following
possibilities: both internal and external, internal only, or external only Open
API programs. Instructions on how to use the template makefile are fully
explained in the comments section of the file.

When you customize the template file, you should copy or move the file so that
it is named either “Makefile” or “makefile”. These are the standard names the
make command expects. Alternatively, you could use the “—f” switch with the
make utility to specify another makefile name that is not of the default name
format (e.g. “make —f my_program_makefile”).

The template makefile was designed to be used with the make command
supplied by the platform’s vendor (HP, SUN, etc.). For further information on
make and file dependencies use, consult your operating system’s provided
utilities documentation (“man make”).

To create an internal Open API program, you would follow the directions from
the makefile. The first step is to set the variable that defines the executable
name of the program. This should be the lead routine (without the .o suffix).

The next step is to list any subroutine object files. This list must be continuous
on ONE line only. The list can be continued to subsequent lines by using the \
character at the end of line. You must be careful that the \ is the last character
on the line (no spaces after the \). All routine names should have the .o
extension.

Open API ©EDS . .
Student Guide All Rights Reserved Unigraphics NX 2

Open API Compiling and Linking

The C compile flags can (optionally) be specified next. Note that to add flags,

you must specify the —ac switch. The flags can be specified in quoted string /S
(e.g. —ac “—g —I/usr/include/Motif1.2 —I/usr/include/X11R5” can be used to 21 7
compile with the debug switch and to add the two directories to resolve include /// /)

files).

The Fortran flags are also available. Fortran callable C wrappers can be used to
call Open API functions if you must use Fortran.

The link flags are available for change. These are equivalent to the data
obtained using the ufmenu link option.

Any of your own libraries or those of third party applications that are needed by
the Open API program are listed here.

The make utility has rules to determine which files are to be compiled and
linked. The executable must be recreated when object files change. Object files
need to be created when source files change. These rules are implicit in make.
However, object files may also need to be recreated when header files are
changed. Explicit rules allow these situations to be defined.

©EDS Open API 1-9
All Rights Reserved Student Guide

Open API Compiling and Linking

Activity: Compile and Link example.c
S
717
Y,

Step 1 Create a sub—directory using your initials or name. You
will perform all activities in your sub—directory.

Step 2 The following code is contained in a file called example.c.
Please copy this into your sub—directory. Use ufmenu to
compile and link the program.

Step 3 Run Unigraphics and execute the program. Try varying
number of parts open in your session, and the units of
open parts.

Open API ©EDS . .
1-10 Student Guide All Rights Reserved Unigraphics NX 2

Open API Compiling and Linking

Error Checking

/////
We strongly recommend that you include this macro definition in your header 217
file and incorporate the error checking macro in every Unigraphics function call ////
that returns a non— zero integer to indicate an error:

#define UF CALL(X) (report error(_ FILE , LINE , #X, (X)))

static int report error(char *file, int line, char *call, int irc)
{
if (irc)
{
char err[133],
msg [133] ;
sprintf (msg, ”*** ERROR code %d at line %d in %s:\n+++ ”,
irc, line, file);
UF_get fail message(irc, err);
/* NOTE: UF_print syslog is new in V18 */
UF_print syslog(msg, FALSE) ;
UF_print syslog(err, FALSE) ;

(
UF _print syslog(”\n”, FALSE);
UF_print syslog(call, FALSE);
UF _print syslog(”;\n”, FALSE);

if (!UF _UI open listing window())
{
UF _UI write listing window (msg) ;
UF _UI write listing window (err) ;
UF UI write listing window (”\n”) ;
UF UI write listing window(call) ;
UF _UI write listing window (”;\n”)

}

}

return(irc) ;

}

Example

If the function returns an integer as an error flag, instead of this call:

UF_PART save_all(&errcount, &errtags, &errcodes) ;
Use this call:
UF_CALL(UF_PART save all(&errcount, &errtags, &errcodes));

If a run time error occurs you will see a listing window with text pointing to the
line of code where the error occurred. Notice that the function called by the
macro checks all return values. Any non zero error code is used to exit via return

(irc).

©EDS Open API 1-11
All Rights Reserved Student Guide

Open API Compiling and Linking

Programming in Windows

77
y 17 Microsoft Visual C++ .NET V7.0 was used to verify the programming
Y, examples in this course.

To use Visual C with the best results, perform the following steps. These steps
assume that that Visual C+ + is installed at
C:\Program Files\Microsoft Visual Studio .NET\Vc7 :

1. Copy all files from
UGII_BASE_DIR\ugopen\vc7_files\vcprojects
to
C:\Program Files\Microsoft Visual Studio .NET\Vc7\vcprojects

2. Copy the entire folder
UGII_BASE_DIR\UGOPEN\vc7_files\VCWizards\Unigraphics NX2 Open
to
C:\Program Files\Microsoft Visual Studio .NET\Vc7\VCWizards

3. Set (or Edit) the Environment variable:
MSVCDir
to
C:\Program Files\Microsoft Visual Studio .NET\Vc7

Start a Unigraphics NX 2.0 Command Prompt window

Start Microsoft Visual C+ + from this window using the command ”devenv”

Open API ©EDS . .
1-12 Student Guide All Rights Reserved Unigraphics NX 2

Open API Compiling and Linking

When you create a new project, a project template for the Unigraphics NX 2

OpenWizard will be available. /////
71 7
Fill in a project Name, Location, other options if applicable, and choose OK. ///A

New Project X|

Project Tvpes: Templates: I - |
----- Yisual Basic Projects w “
D I F C _I

-----] Wisual C# Projects :
_____ a R D Managed MFC Ackivel MFC
CH+ W Conkral Application

----- {27 Setup and Deplovment Projacts

l -] Other Projects ﬁi%
----- L7 visual Skudio Solutions FIC|

MFCDLL MFC ISAPI

Extensi...
Create a Unigraphics ME2 Open or Open++ projeck
Mame; I rreeufunc
Location: I Gy prograrmsryufunc j Browse, ., |
Mew Solukion Mame: I rstUfUnG [Create directory For Solution

Projeck will be created at Gy programs i myufuncimyufunc,

£less | Ik I Cancel | Help |

©EDS Open API —
All Rights Reserved Student Guide 1-13

S
Y ”
v /

Y,

Open API Compiling and Linking

The Unigraphics NX2 Open Wizard overview window will appear and list the
default project settings. Choose Next to change the project settings.

with the properties wvou specify,

Unigraphics NxXZ Open YWizard - myufunc

wWelcome to the Unigraphics NX2 Open Wizard

This wizard generates a Unigraphics MX2 Open external or dynaric link library application project

Overview
Application Sekkings

Entry Poinks

These are the current projeck settings:

® Create a dynamically loaded library using C++
& [LL entry paoints: UFSTA
DLL unloads when Unigraphics M terminates

Click. Finish From any window bo accept the current settings,

After you create the project, see the project's readme bt File For information

about the project features and files that are generated,

“Eack | MeExt = I Einish Zancel
Open API ©EDS . .
1-14 Student Guide All Rights Reserved Unigraphics NX 2

Open API Compiling and Linking

In the Applications Settings window, choose the type of application (internal or
external) and the source code type (C++ or C). Choose Next to specify Entry .,/ /,

Points. ; 1 ;

Y,

Unigraphics NxXZ Open YWizard - myufunc 5[

Application Settings

Specify the bype and Feaktures of the DLL.
DS

wehat type of Open application would vou like to create?
% Aninternal application that can be ackivated from a Unigraphics M session (DLL)

Application Settings " An external application that runs independent of Unigraphics (EXE)

Entry Painks

wihat language would wou like to use in the generated source files?
 C++

[T Use opent+ calls
f+ C

<Back Mexk= Einish Cancel

©EDS Open API 1-15
All Rights Reserved Student Guide

Open API Compiling and Linking

In the Entry Points window, specify one or more activation options, a User Exit
77 if applicable, and an unloading option. When you have selected the desired
/ /

/ / options, choose Next.

Y,

Unigraphics NxXZ Open Wizard - myufunc o 5[

Entry Points

Specify the entry points of the DLL,
DS

Howw would wou like ko activate the application?
[T automnatically (ufska)

1=,

J:'||:||:||i|:Elti|:|F| '_:lEfttiFll;]S p ExpliEiH‘:.-' (UFHS[’:I
Entry Points ™ From a User Exit
Cpen Part (ufget) il
Mew Part (ufcre)

Save Part (uFput)
Save Part As (Ufsvas)

Imnport Part (ufmrg) LI

Howe would you like ko unload the application?
" Auktomatically, when the Unigraphics My session terminates

f* Automatically, when the aplication completes

" Explicitly, wia an unload dialog

<Back Mext= Einish Cancel
Open API ©EDS . .
1-16 Student Guide All Rights Reserved Unigraphics NX 2

Open API Compiling and Linking

The Overview window appears again, listing the options that were specified for

the project. 77

/ 1 /

; /

Unigraphics NXZ Open YWizard - myufunc . 5[///A

wWelcome to the Unigraphics NX2 Open Wizard

This wizard generates a Unigraphics MX2 Open external or dynaric link library application project
with the properties wvou specify, DS

These are the current projeck settings:
Overview e -

Create a dynamically loaded library using C
application Setkings & [LL entry points: UFLISE
[DLL unloads when the application completes

Entry Painks
Click. Finish From any window bo accept the current settings.

After you create the project, see the project's readme. bt File For infFormation
about the project features and files that are generated,

“Back, | Mexk = | Einish I Zancel |

When you choose Finish, the Unigraphics NX2 Open Wizard will create a
project containing a C source file. The source file will contain comment lines
indicating where to place your code.

©EDS Open API 1-17
All Rights Reserved Student Guide

Open API Compiling and Linking

A Second Method to compile and link in Windows

77
y 17 If you have proven code, you can compile and link from the DOS command
Y line. To find information about this use the following sequence.

Start the Help application and choose the Open API Reference Guide @:

Help Library

What's New Q
Eelease Notes

Unigraphics NX 2

i Design

i Manufacturing

i CAE

i Autornotive Application

i Product validation

i@ Tools

= [Open 4
@ AP| Programmer's Guide
@ 4P| Reference Guide @D
@ GRIP Reference Guide
@ Qpen C++ Programmer's Guide
@ GRIP NC Reference Guide

il Sheet Metal

il Routing

Iﬁ knowledge Driven Application

i Translators

i@ Other

ﬁ Systerm and File Management —

@ Froprietary and Restricted Rights Motices LI

¥

|:§| Applet Toc skarked

Open API ©EDS . .
1-18 Student Guide All Rights Reserved Unigraphics NX 2

Open API Compiling and Linking

Scroll the Overview section of the API Reference Guide to Windows Operating

System Setup @:

API Reference Guide

Q

[

| ol

[

5

e Setting up vour system
Open C Header File Index
_ Thiz section describes the machine dependent mformation on how to setup and
Qverview uze Open O on yvour systermn. To use the Open C APT, vou must have the © or
O+t enwvironment setup on yvour workstation. If this enwironment 15 not set up,
uf vour system administrator must mstall it For firther details see;
uf abort HP-UX Setup
uf assem Sun Setp
uf_atty SCI Setp
uf bound IBM-ATH Setup
uf brep Windows Operatne System Setup
b e Compiler Certification
uf cfi) _ . . . L
I The table below specifies the compiler wersion that compiles Tnigraphics itzelf
of clear on each platform. EDS PLIM Zolutions does not certify any other compiers for
- use with Open C programs. In general, the platform wendors must address any
o clone problems with a compiler newer than that which built Thigraphics. (See the
ur_clone Ellgs " J . -
|:Ej Done I_ I_ ’_ Local inkranet

4

Finally, in the Windows Operating System Setup section, scroll to the heading
Developing From the Command Line.

©EDS
All Rights Reserved

Open API
Student Guide

/S
Y ”
71 7

Y,

Open API Compiling and Linking

S
Y ”
1 7

Y,

SUMMARY You have examined both methods of compiling
and linking Open API programs, using either

the ufmenu interface or the make utility.
In this lesson, you :

¢ Invoked the ufmenu window.

e Examined the options available on the
ufmenu for Edit, Compile, and Link.

e Learned about the makefile template
provided by Unigraphics.

e Compiled, Linked and Ran an internal
User Function program.

Open API ©EDS . .
1-20 Student Guide All Rights Reserved Unigraphics NX 2

User Interaction

User Interaction

Lesson 2

An important aspect of Open API program development is the interaction with the
Unigraphics user. Unigraphics provides both callable functions (Open API) and an
interactive Graphical User Interface (GUI) builder (User Interface Styler) to

interface with the program user. The available functions consist of both Open API 77
legacy functions and User Interface Styler API functions. / /
/

Y,

OBJECTIVES

Upon completion of this lesson, you will be able to:

Check out and check in Open API licenses.

Control how Unigraphics loads and unloads
programs in memory.

Identify routines to open, close, and save
Unigraphics part files.

Invoke and use the User Interface Styler Dialog to
build custom dialogs.

Work with the files created by the User Interface
Styler Dialog.

Obtain and set data from a User Interface Styler
dialog.

©EDS Open API 2—-1
All Rights Reserved Student Guide

:////,

/

/ 4
7

User Interaction

The code templates and the necessary Open API routines to create the shell
components of a hand—held calculator will be presented. Please use your
student sub—directory to edit and create programs/parts. When you complete
the project, you will have created the following functions:

calculator.c

calc_assem.c
calc_comp_array.c
calc_dimension.c
calc_dimension_bottom.c
calc_dimension_button.c
calc_dimension_button_edges.c
calc_dimension_top.c
calc_dimension_top_edges.c
calc_drawing.c
calc_drawing_views.c
calc_edit.c *

* optional exercises

Open API ©EDS
All Rights Reserved

Student Guide

calc_expr.c
calc_model.c
calc_model bottom.c
calc_model button.c
calc_model top.c
calc_model top_holes.c
calc_part.c

calc_plot.c *
xxx_calc_setup.c
calc_set_style dialog.c

ug set_ wcs_to_view.c

Unigraphics NX 2

User Interaction

Overall Class Project

The top—level function for the internal Open API application executable will
be calculator.c. You will copy the template version of calculator.c from the
default directory to your sub—directory and edit your copy. This same scheme
will apply to all the other functions created for this program. Please note that
the code is written specifically for the UNIX workstation environment,
although most of it should transfer readily to an Windows environment.

Additionally, there may be further activities in each lesson that create
subsequent Open API programs to accomplish various tasks. Although
unrelated to the Calculator project, these tasks are meant to give a broader
understanding of the Open API routines available.

©EDS Open API 2-3
All Rights Reserved Student Guide

7z
;2
7

/e

/
/ /

/ 4
7

User Interaction

There are three main components in the calculator assembly model: the top
half, bottom half, and button. The holes in the top half are created with
rectangular pocket features. The button hole is duplicated using a feature
instance array. Multiple copies of the button component are added as a
component array.

At the end of each activity, compile, link and run the latest version of the
program to make sure that there are no errors. Be sure to check the
appropriate compile log files for warnings and errors.

Crystal Display

Hole for Liquid \>/\ /

Figure 2—1 Model of hand—held calculator

Open API ©EDS . .
Student Guide All Rights Reserved Unigraphics NX 2

User Interaction

The first two activities will address the initial program setup and user
interaction. Internal Open API programs use an entry point named ufusr. The
routine name is prototyped in uf.h. All executable C language internal Open
API programs should start with ufusr and include the header file uf.h. The
three ufusr parameters are a character pointer, integer pointer and integer
argument. Although not currently used in our courseware activities, these three
input parameters must still be declared.

General Open API Program Format

include <uf.h>

void ufusr (char *param, int *retcode, int param_len)
{int irc;

irc = UF _initialize();

check return code; Body of program;

irc = UF_terminate();}

int ufusr_ask_unload(void)

{return (UF_UNLOAD_IMMEDIATELY);}

Once an internal Open API program is loaded into memory, it remains resident
until Unigraphics is exited. This default behavior can be changed to force the
program to unload after usage or unload when selected by the user. The
function called ufusr_ask_unload can be defined for these actions by the
programmer. Unigraphics will call this routine if it has been defined. You
should NOT call the routine from your program.

When you are developing code, you will normally use the “unload immediately”
option. This allows you to make changes to your source and reload the updated
shared image without restarting Unigraphics. If the unload option is not used,
the original program executable image remains in use until you exit
Unigraphics.

The initialize and terminate routines check out and check in, respectively, a
Open API license. These must be present in any Open API program or Open
User Exit routine.

©EDS Open API 2-—-5§
All Rights Reserved Student Guide

7z
;2
7

User Interaction

License Check In/Check Out Routines

A Open API program must check out a license before any calls to Open API
routines are made.

e UF _initialize
e UF_terminate
¢ int UF_terminate(void)

e ufusr_ask_unload

V7
;2 o ufusr_cleanup

/ 4
7

NOTE You must use ufusr_cleanup in conjunction with
ufusr_ask_unload. If you code ufusr_cleanup without defining
ufusr_ask_unload, then the ufusr_cleanup entry point is
ignored.

Throughout the class, functions of interest will be listed in this manual. Look up
the corresponding reference material using a web browser on your workstation.

The API Reference Guide

Open the file .../UGDOC/html_files/ugopen_doc/main.html and choose the
header file uf from the list at the left of the window. In the window that opens,
choose Functions and refer to the documentation on each of the above items.

Open API ©EDS . .
2-6 Student Guide All Rights Reserved Unigraphics NX 2

User Interaction

Calculator Entry Point, calculator.c

Our Open API entry point will be declared in the file calculator.c. The program
has comments regarding the steps that will be taken to create the calculator.
Code will be added to this program in the course activities to perform the
commented tasks.

Code Discussion: calculator.c
The first line in the program includes the main Open API header file.

#include <uf.h>

#include <uf defs.h>

uf.h contains the prototypes for the UF _initialize and UF_terminate functions.
Other general purpose routines are also prototyped in this header file. The
documentation of each routine in the Open API Reference has the appropriate
header file with the routine’s prototype listed on the starting page of the
manual section.

The next include file, uf_defs.h, contains typedefs for general Open API
programming. User Function (the legacy name of Open API) was originally
written for Fortran. For cases where programs are migrating to V16 from earlier
version of Unigraphics, routines for replacing the Fortran calls are documented
in various text files (search on “legacy”) in the ugopen directory.

The Open API Reference contains a complete list of all header files. Each
chapter that introduces a group of functions indicates which include files are
needed. The header files should be located when Unigraphics is installed in the
Open sub—directory (SUGII_BASE_DIR/ugopen).

#include “calcproto.h”

void ufusr (char *message, int *eflag, int mlen)

The file “calcproto.h” is our function prototype file, which we will build as the
program is developed. The three arguments in the ufusr declaration, message,
eflag, and mlen, are not used by the Open API. These arguments are used by
programs written as User Exits.

©EDS Open API 27
All Rights Reserved Student Guide

7z
;2
7

User Interaction

Checking for an active part is the first activity to be perform in the program
(after calling UF _initialize successfully).

/* check for an active part */
flag = calc_part();
if (flag != 0) return ();

Most programs you will write will want to know if a part is loaded. Some
programs may load a part if necessary. The function calc_part is outlined in
subsequent pages.

:////,

/

/ 4
7

Open API ©EDS . .
2-8 Student Guide All Rights Reserved Unigraphics NX 2

User Interaction

Memory and Message Routines

Some Open API routines will allocate memory for data that persists once the
function has returned. The Open API does not directly use the regular
operating system provided malloc routines for this memory allocation.
Unigraphics has its own memory manager which efficiently reserves and frees
memory. Routines that allocate memory will have an indication in the I/O
column of the documentation of OF. This indicates that the variable is a
persistent output variable and must be freed. Unless otherwise specified, the
routines UF _free and UF free_string_array should be used to free the
Unigraphics memory manager allocated memory before the program

terminates. /e
/9 v
/ /
Memory allocated by any Open API routine will stay allocated until the Y,

appropriate memory freeing routine is called or until the Unigraphics session is
terminated. You must be careful to free any allocated memory, especially in
programs or routines that may be run often during a Unigraphics session,
otherwise there could be memory leakage problems, resulting in an “Out of
Memory in Storage Manager,” or similar error.

The routines that allocate memory will be evident by the fact that a pointer to a
pointer will be required for the Open API function argument. The I/O column
in the calling argument table will have the mnemonic OF for Output/Free
memory. A general convention in the Open API Reference manual is for
typedefs of pointers to include an _p in their name. The variable tag_t is a tag
of an object or part. A tag_p_t is a pointer to the tag of an object or part (tag_t *
is equivalent to tag p_t).

e UF_free
e UF_free_string_array

o UF_get_fail_message

Invocation Macro

Many Open API functions return integer values that can be recognized by

UF get fail_message. For those routines, the process of checking the error code
and printing the message can be done using a macro (C language preprocessor
macro; not to be confused with a Unigraphics Macro). The macro is designed
for only routines that return integers recognizable by the error message routine.

#define UF_CALL(X) (report(#X, _ FILE_, _LINE_ , (X)))

©EDS Open API 2-9
All Rights Reserved Student Guide

User Interaction

The UF_CALL macro invokes a subroutine (below) with the last argument (X)
being the actual Open API call. The C preprocessor directives for the file name
and line number have two underscores before and two after the words (FILE

and LINE).
static int report(char *call, char *file, int line, int irc)
{if (irc) {char messg [133];

printf (”%$s\n%s, line %d: ”, call, file, line);

(UF_get fail message(irc, messg)) ?
printf ("Returned %d\n”, irc)
printf ("Error %d: %s\n”, irc, messg);}
return(irc);} /* report */
v/
/

/ The report routine is static and will print out a message if a non—zero return

/ 4
7/ code is received. It also returns the code to the calling routine. The #define
and report routine can be added to calcproto.h and used in the class exercises.

Open API ©EDS . .
2-10 Student Guide All Rights Reserved Unigraphics NX 2

User Interaction

Part Routines

Unigraphics Open API provides many routines to access information about
part files. You can determine the number of files open, the name of all open
part files, the part file units, and the display part. You have the ability to open,
close, export and import part files. The routines are prototyped in the header
file uf_part.h. The header file also contains the definition of a structure used
when opening part files. The routines we will be using are discussed on the
following pages.

/7
e UF_PART_open 72
/
e UF_PART close_all 7,

e UF_PART_save_all

e UF_PART _ask_part_name
e UF_PART ask_part_tag

e UF_PART _ask_units

e UF_PART ask_display_part
e UF_PART set_display_part
e UF_PART is_modified

©EDS Open API —
All Rights Reserved Student Guide 2-11

User Interaction

Menu Routines

All user interaction can be performed through the Open API library of
functions. The interaction functions currently have names that begin with
ucl6xx. User Interface Styler and Motif programs can also be incorporated with
Open programs to perform user interface tasks.

The User Interface Styler routines require a Styler license. The ucl6xx
functions have limitations that are not present in the Styler functions. Some of
the older functions will be covered but our main focus will be on the User

Interface Styler.
iz

72"
7

e ucl601 Display a Simple Message on the Cue line
e UF_UIL_set_status

e UF_UIL_set_prompt

e ucl603 Display Selection Menu

e ucl605 Multiple Selection Menu

NOTE Please avoid using format escape sequences in the cpl
character string in uc1601. For example, the newline
escape sequence (\n) can cause an undesirable shift in the
displayed text.

Code discussion: calc_part.c

tag t parent; /* tag of parent part */

tag t is a type definition used by Unigraphics. Currently, a tag _t is an unsigned
integer. Use “tag_t” whenever you are creating a variable for an object; whether
the object is a part or a piece of model geometry. If the typedef should ever
change, your code will automatically change with it. If you use “unsigned int”
rather than tag_t, you would have to change your code when (if) the typedef for
tag t is changed.

Open API ©EDS . .
2-12 Student Guide All Rights Reserved Unigraphics NX 2

User Interaction

numparts = UF_PART ask num_parts();

Count the parts that are loaded.

resp = ucl603(estr,deflt,option,2);

ucl603 presents a menu to the user.

UF_PART save_all(&errcount,&errtags,&errcodes);

Save all loaded parts. Note that the arguments to this function are declared as:

e int errcount
e tag t *errtags

e int *errcodes

errtags and errcodes are allocated by UF_PART save_all and becomes an array
of part tags of the parts that could not be saved and an array of error codes. If
the return from UF_PART save_all is not zero, these arrays should be freed
with UF _free once the appropriate actions to deal with the errors have been
taken.

UF_PART close_all();

Close all loaded parts. This may not be necessary for other programs. We
choose to make it a requirement of this program.

/* Retrieve calculator.prt using resp = UF_PART open. Display an error
dialog and return an non—zero if an error occurs. */
strcpy(estr, “./calculator.prt”);
resp = UF_CALL(UF_PART _open(estr,&parent,&estat));
if(resp)
return(resp);

UF_PART open returns the tag of the part and an error status structure. The
structure is declared with UF_PART load status t estat. The structure for
UF_PART load_status is described in the uf part.h file

©EDS Open API —
All Rights Reserved Student Guide 2-13

7z
;2
7

User Interaction

if(estat.n_parts){
uc1601(“Calculator part had components that did not load.”,1);
ucl1601(“The part should be empty!”,1);
UF _free(estat.statuses);
UF _free_string_array(estat.n_parts,estat.file_names);
return(1);
¥

return (0);

Please note that, if there are errors, the memory allocated for the integer array
must be freed with UF _free and the memory allocated to the string array must

4 . .
/////; be freed with UF _free_string array.
; /
7,
Open API ©EDS . .
2-14 Studerﬁeguide All Rights Reserved Unigraphics NX 2

User Interaction

Activity: Check Session for Open Part Files

Step 1

Step 2

Step 3

NOTE

Copy existing files calculator.c, calcproto.h, calc_part.c, and
Makefile to your sub—directory.

Edit calculator.c and verify the ufusr_ask_unload function
is present. See page 2—5 for an example. Examine the
file calcproto.h.

1 The prototype include file should have one prototype line.
The file will, at a later time, require a typedef declaration
made in uf_modl.h. The header is included in the template
file provided.

/* include file calcproto.h */

#include <uf.h>

#include <uf defs.h>

#include <uf modl.h>

#include <stdio.h>

/* prototypes for functions in the calculator program */
int calc_part(void);

Edit calc_part.c and add the code necessary to perform the
activities stated in the program comments. Variables are
already declared for the necessary Open API function
calls.

Comments starting “/*xxx” indicate that a Open API
function call should be added. Other comments are
included in the program for clarity.

©EDS Open API 2-15

All Rights Reserved Student Guide

7z
;2
7

User Interaction

Step 4 Launch a Unix window with the UG environment by
selecting “UGADMIN?” from the Uniproducts menu. Pick
the “Unix Shell (Start UNIX subshell)” option from the
Administration Utilities sub menu. Dismiss the submenu
if necessary.

Step 5 Edit Makefile and add the function calc_part.o to the

SUBOBJS area. From the window created in the previous
step, use the command “make int” to compile/link your
program. You may have to edit your file(s) and fix compile

y i/ errors.

/9 v

/ ’

Y

Step 6 Create a metric part called calculator.prt and save it.

Step 7 Run the program calculator. Try it with parts loaded and
without parts loaded.

Open API ©EDS . .
2-16 Student Guide All Rights Reserved Unigraphics NX 2

User Interaction

User InterfaceStyler

The User Interface Styler lets Unigraphics users and third-party developers
generate Unigraphics dialogs. The User Interface Styler is a development tool
that:

e Provides a visual builder that allows a developer to correctly build
Unigraphics dialogs and generate a User Interface Styler file (with a
.dlg extension) that encapsulates the code associated with creating a
dialog without requiring comprehensive knowledge of the underlying
Graphical User Interface (GUI). The User Interface Styler API
insulates the application programmer from the specifics of GUI
programming while providing the look and feel of Unigraphics dialogs.

e Reduces development time because of the visual builder and
automatic User Interface Styler file generation.

e Allows you to rapidly prototype a dialog by selecting objects such as
pushbuttons, toggle buttons, etc. from an object palette list.

e Allows you to select your own user defined bitmaps.

e Provides an attributes editor that allows you to set or modify the
attributes of a particular object. For example, the state of a toggle
button is an attribute. The attributes editor enables you to specify a
valid state for the toggle button (on or off). All of the attributes are
conviently listed when you select an object from a list window.

e Provides context sensitive help for objects located on the User
Interface User Interface Styler dialog. The bottom of the dialog
window has an area that dlsplays context sensitive information when
you position the cursor over an icon.

The User Interface Styler is compatible with UG/Open MenuScript and can be
associated with an action in a UG/Open MenuScript “.men” file. Thus, User
Interface Styler dialogs can be launched from a MenuScript menubar.

Some Open API functions provide a programmatic interface to the User
Interface Styler. These functions will be discussed later in this chapter. The
functions are also described in the Open API Reference manual and
prototyped in the uf styler.h header file.

©EDS Open API —
All Rights Reserved Student Guide 2-17

////
;27

////

:////,

/

/ 4
7

User Interaction

Invoking the Styler

You can access the User Interface Styler directly from the Unigraphics
Application Pulldown menu (Application—User Interface Styler...). You are not
required to have an open part.

E@ Modeling. .. Ckrl+r
@ Shape Studio...
ﬁ Drafting. ..
|§' Manufacturing... Ckrl+AlE+M
E‘ atruckures...
MaoldFlow Part Adviser. ..
MasterFEM+-. ..
@ Mation. ..
Shest Metal k
Routing k
Wire Harness. ..
$ Assemblies Crl-Alk4+4
@. knowledge Fusion
ﬂ Gateway, .. k|-
Figure 2—2 Accessing The User Interface Styler
Once you select the User Interface Styler option, the User InterfaceStyler
Graphical Interface dialog and Menubar display along with a default dialog
(called the Design Dialog). The Design Dialog displays as an empty dialog box
with only the OK, Apply, and Cancel buttons.
Open API . .
2-18 Student Guide All Rigl%sE ggserved Unigraphics NX 2

User Interaction

Styler Menus
User i
Interface ¢ Unigraphics NX - User Interface Styler - [calculator.pri]
Styler m% File Edit Insert Dialog Preferences Help
Menubar
A T [z [ac ,a_h':E: VI .‘3’|
////
—k 1 1.2 = = = | =] I ’
Toolbars— =i={ | (@ jj -+ .-_'|—| = B E |..Q e i ;2
////
Sl:andard T
UG,/Open User Interface Styler
Dialog —— CHANGE
Property Page —-- Property Page
Object CHANGE ACTION 1 : "Push Button”
Browser | CHANGE _ACTION 2 : "Push Button”
CHANGE RADIO 3 : "Radio Box™
CHANGE SCALE INT 4 o
CHANGE LIST 5 IR
Dyvrrmroarvtrr Daoara BwA
Resource Editor - Current Objeck: Dialog
Aktributes |Selectin:un I Callbacks I
Resource : : I‘
.y cm— Dialag Tikl
Editor S |
e I
MemFive Bl=rme I:"'T.T ARTT T Llmv =i I
Design _i
Dialog

©EDS Open API —
All Rights Reserved Student Guide 2-19

User Interaction

User Interface Styler Resource Editor

The large dialog displayed when the User Interface Styler is selected is a focal
point for user interaction. Objects created from the toolbar are modified from
this dialog. The number of tabbed pages, and the content of those pages, will
vary depending on the object selected in the object browser.

Object Properties
attributes I Zallbacks Attachments |

Side Ikem Pixel Offset

:////,
/
Top IMVFLINCTIDN_EITMP.F‘_D_ITEM | | 0

/ 4
7

Object Properties
attributes Scale Limits |Calll:uan:k5 I attachrents I

™ Hide & Yalues { Labels

Minirnurn 0. 00000

Mazirnur S .nooo

Resource Editor - Current Object: Dialog

attributes Selection |Calll:uan:ks|
¥ Enable [Simple

Twpe
’}:' None " Single " Robust

[T Select [T beselect

[~ Single Position [~ Rectangle Position

—aCope
{* Mo Change

7 Any in Assembly

 wWork Park Cnly

™ wWork Part and Subassembly

Figure 2—3 User Interface Styler Resource Editor

Open API ©EDS . .
2-20 Student Guide All Rights Reserved Unigraphics NX 2

User Interaction

Object Browser

The Object Browser displays all of the User Interface Objects (UIObjects) that
you have constructed in your dialog. The browser allows you to browse through
your UIObjects and modify the resources of each object. The Resource Editor
automatically updates to display the resources of the item you select in the
Object Browser. You may also edit your User Interface Objects with the editing
features provided just below the Object Browser.

NOTE The Dialog is also considered a User Interface Object S
and contains a wide range of helpful resources. 22 /

/ 4

/Y

The Object Browser also supports multiple selection of UIObjects in the
browser. This allows you to cut/copy/paste groups of UIObjects in your dialog at
one time. The Resource Editor is not available when you invoke multiple
selection.

Save Dialog

The Save Dialog option displays a file selection dialog that lets you specify a
pathname to a directory and a name for your dialog. The dialog file name may
be up to 30 characters in length, including the extension and any periods. Valid
characters for a file name are dependent on the operating system. Pathname
specifications can be up to 132 characters in length. If you specify the name of
an existing file, an error message displays (Use Save As instead). Enter a file
name without an extension. Three files are saved to disk:

dialog file binary file with a “.dlg” file extension.
header file C header file with a “.h” file extension.
template file Open API template file with a “.c”

extension. The suffix “_template” is
appended to the file name that you
provide.

The C source will start with many lines of comments to explain the file contents.
The comments also include 3 methods of invoking the program. A method can
be uncommented or you can create your own call to invoke the dialog. All the
callback stubs are created in this source file.

©EDS Open API —
All Rights Reserved Student Guide 2-21

/e

/
/ /

/ 4
7

User Interaction

Open API routines for the User Interface Styler

Now that our main program calls our routine to check part status in the
Unigraphics session (and retrieve our part), we will add a routine to determine
the style, height, and width of the calculator. The routine will present a dialog
created using the User Interface Styler. The calculator style determination will
be presented in the dialog using a Tool Box. Height and Width will be obtained
from real fields. Four fields will be presented; two for horizontal, two for
vertical.

The User Interface Styler allows control of the field sensitivity. The height and
width will be available (sensitive) for the style of calculator selected. These
values will be obtained from the dialog when the user selects the OK button.
The Open API provides functions to set and ask about items on a User
Interface Styler dialog.

The User Interface Styler can create 2 types of dialogs. A Top dialog acts like a
UG Dialog area 1 (e.g. the Modeling palette). A non—top dialog is equivalent
to a Dialog area 2 (e.g. the point subfunction menu). This DA2 dialog can have
OK, Apply, Back, and Cancel buttons. The API call to create the dialog is
automatically generated in the template source file.

e UF_STYLER_create_dialog
e UF_STYLER_ask value

e UF_STYLER ask values
e UF_STYLER_set_value

e UF_STYLER_free_value

Querying Attributes

The following attributes can be queried via UF_STYLER ask value or
UF _STYLER ask values:

e UF STYLER SENSITIVITY
e UF STYLER SELECTION

e UF STYLER VISIBILITY

e UF STYLER VALUE

e UF STYLER SUBITEM VALUES
e UF STYLER ITEM TYPE

Open API ©EDS . .
Student Guide All Rights Reserved Unigraphics NX 2

User Interaction

Setting Attributes

The following attributes can be changed by calling UF_STYLER set value.

UF_STYLER_SENSITIVITY
UF_STYLER_VISIBILITY
UF_STYLER_VALUE
UF_STYLER _LABEL
UF_STYLER_BITMAP
UF_STYLER_FOCUS
UF_STYLER_SUBITEM_VALUES
UF_STYLER DEFAULT ACTION
UF_STYLER DIALOG WIDTH
UF_STYLER DIALOG _RESIZE
UF_STYLER_SCALE_PRECISION
UF_STYLER_LIST UNSELECT
UF_STYLER_LIST INSERT
UF_STYLER_LIST DELETE
UF_STYLER_LIST SHOW:

©EDS Open API
All Rights Reserved Student Guide

/e

/
/ /

/ 4
7

User Interaction

Activity: User Interface Styler for Calculator Data

In this activity, you will use the User Interface Styler to create a dialog to
prompt for the calculator Style, Height and Width.

Calculator Info

Specify Calculator Style

7y
y 2 / b

;////: Warith

{i¥. | Back | Cancel

Step 1 Obtain the bitmap file from the parts directory.

1 Copy the file calculator.ubm to your subdirectory. The file
contains two bitmaps shown in the figure above. Windows
users: see the special instructions later in this activity.

Step 2 Start the User Interface Styler
1 Choose Application — User Interface Styler ...

The Resource Editor and Object Browser are displayed. The
Design Dialog appears, with a default configuration
consisting of only OK, Apply and Cancel buttons.

Step 3 Specify the resources for the dialog

The default dialog name is CHANGE. This name should be
altered to a more meaningful name.

1 In the Prefix Name field of the Dialog Properties, Attributes
page, rename the dialog to CALC, and press Enter.

TIP Always hit the Enter key after changing a field in the
Dialog Properties Dialog. You cannot harm the dialog by
hitting Enter. Data may be ignored if you do not!

Open API ©EDS . .
2-24 Student Guide All Rights Reserved Unigraphics NX 2

User Interaction

Step 4

1 Click in the Dialog Title field and type in “Calculator Info”
(remember to hit Enter!)

1 Click in the Cue field and type in “Specify Style, Height, and
Width” (remember to hit Enter!)

Leave the Dialog Type set to Bottom.

1 Use the Button Style Options drop list to set the buttons to
OK, Back, and Cancel.

Notice the Design Dialog now contains a Back button

instead of the default Apply button. :////;
/ /

/
Calculator Info 7

0OFK. | Back | Cancel

1 Set the Initially Sensitive toggle for the OK button to Off
(not checked.)

The OK button will be unavailable until the user selects a
calculator style. We will turn the sensitivity on inside the
source code generated for this dialog.

1 Set the Allow Dialog to resize to On (checked.)

J Choose the Callback tab.

The Callback page presents a list of possible callbacks. These
callback functions are bound to buttons/actions by Unigraphics.
The Back callback will have a default callback name (because
we specified a Back button). The Cancel button will dismiss the
dialog without requiring a callback. We will add an OK callback.
That function will be augmented with API calls to extract style,
height, and width data from the dialog.

1 Click in the OK Callback field and type in “ok_cb”
(remember to hit Enter and do not key in the quotes!)

Create buttons to prompt the user for Style.

1 Choose the Tool Palette icon in the Items toolbar. L]

L

©EDS Open API —
All Rights Reserved Student Guide 2-25

User Interaction

A default Tool Palette will be added to the design dialog, and
Object Properties are displayed in the Resource Editor.

Step 5 Specify the resources for the Tool Palette buttons

2 In the Identifier resource field enter “Style”.

1 Click the browse icon beside the Bitmap field and navigate
to your calculator.ubm.

7z
;2
7

Calculator Info
Tool Palette

{i¥. | Back | Cancel

NOTE Windows Users — the UBM bitmap format is Unix only.
Use calculator_win.ubm instead of calculator.ubm. This is
a simple text file. You must edit this file to give the full
and complete path name for two bitmap files in your files
directory, calculatorl.bmp and calculator2.bmp.

The Initial Integer Value field should be left a —1. This
indicates that no style is selected initially. When the vertical
style is selected, the value will become 0. For horizontal, the
value would be 1.

The ubm file can contain multiple bitmaps. The Items field
controls the number of icons (buttons) that will be presented.

Open API ©EDS . .
2-26 Student Guide All Rights Reserved Unigraphics NX 2

User Interaction

1 Key in the words “Vertical” and “Horizontal” on separate
lines in the Items list window.

L T e L TR R TR I -

Mumber of RowsCalumns I]

Items
Vertical
HDriantaﬂ
v
2
7

1 Choose Apply in the Resource Editor dialog.

Two buttons will appear on the dialog. If you place the cursor
over a button, the name on the Item list will be displayed.

Calculator Info
Tool Palette

|ﬁ]rizuntal

{i¥. | Back | Cancel

1 In the Label field enter “Specify Calculator Style.”
J Choose the Callbacks tab.

1 In the Activate window enter “style cb.” Remember to press
Enter.

Step 6 Edit the Tool Palette attachments to center the icons.

] Choose the Attachments tab.

©EDS Open API —
All Rights Reserved Student Guide 2-27

User Interaction

1 Make sure the Center toggle is ON in the Attachments page.

Object Properties

attributes I Zallbacks Atkachments |

Side Ikem Pixel Offsek

ToP | Dialog | 0

Left Dialog 0
://2//; Right |pjone | 0

/ /
/Y —
= J

You will not see any immediate difference in the Design
Dialog. This step insures the tool palette will remain
centered when more items are added to the dialog.

Step 7 Allow the user to specify Height/Width

1 Select the Separator icon. |—

The separator attachments can be edited at any time. You
may want to distance the separator line from the icons.

3 Select the Real icon. [iz

1 In the Identifier property field key in “Height” and press
enter.

We'll leave the initial real value at 0. When the user picks a
style, we will load the default values for that style.

1 In the Label property field key in “Height” and press enter.

1 Change the Sensitive toggle to False; that is, set the check
box to not checked.

Open API ©EDS . .
2-28 Student Guide All Rights Reserved Unigraphics NX 2

User Interaction

This field will be inactive (not sensitive) until a style is
chosen. We will not specify an Activate Callback.

Calculator Info

Specify Calculator Style

b
{3¥. | Back | Cancel ://///
/
/ /
)) g
3 Once again, select the Real icon. [1z 7/

1 In the Identifier property field key in “Width” and press
enter.

We’ll leave the initial real value at 0. just as we did for height.

1 In the Label property field key in “Width” and press enter.

1 Change the Sensitive toggle to False; that is, set the check
box to not checked.

This field will also be inactive until a style is chosen.

Calculator Info

Specify Calculator Style

b
Wil HER
{3 | Back | Cancel

©EDS Open API —
All Rights Reserved Student Guide 2-29

User Interaction

The dialog will be saved in its current configuration. Changes to the dialog
attachments (changing the arrangement of objects) should be done after the
exercise is complete.

Step 8 Save the dialog, source, and header files.

1 Choose File — Save.

1 Make sure you are in your subdirectory! Enter the file name
“xxx_calc_setup” (where xxx are your initials).

i/ . . e
12 7/ You will receive a message from UG indicating that all User
2 /: InterfaceStyler files have been saved. The Dialog, Include,

and Template file names will be listed in the message.

Step 9 Exit the Styler Application.

1 Choose File — Exit Styler

1 Choose “Yes” to indicate that you really wish to quit.

Step 10 Adjust the source file name and dialog file directory.

The Styler will overwrite the template file, dialog file, and
header file every time you save. Since you want to edit the
template file, you will rename it to prevent overwrites.

The dialog file should be located in an application directory.
UG automatically looks in specific directories for these files.

Unix commands are shown. Windows users are familiar with the
corresponding Windows actions.

1 Rename the template file from a Unix Shell by typing in the
command (do this from your working directory):

mv ../xxx_calc_setup_template.c xxx_calc_setup.c

1 Move the dialog file to the application directory (from a
Unix Shell) by typing in the command:

cd ~/application
mv ../xxx_calc_setup.dlg xxx_calc_setup.dlg

Open API ©EDS . .
2-30 Student Guide All Rights Reserved Unigraphics NX 2

User Interaction

Step 11 Edit the header file and include our prototype.
1 Edit the file xxx_calc_setup.h and add the line

#include <uf styler.h>
#include “calcproto.h”

Step 12 Edit the source file and create an entry point.

The source file created for the dialog has numerous comment
statements. We will uncomment one of the commented sections
for invoking the dialog.

1 Find the section of code that is set up for creation from a ///2//;
callback. Look for the following comment: y /
7

[————— DIALOG CREATION FROM A
CALLBACK HELP—-Example—— — — —————

If you wish to have this dialog displayed from the callback of
another User Interface Styler dialog, you should:

1 Delete or comment the #ifdef line. The statement appears
once in the comment statements in the program. The second
occurrence starts in column one and appears as:

#ifdef DISPLAY_FROM_CALLBACK

1 Enter a function name. Our function will pass back height,
width, and style. The return value will be nonzero for Back,
Cancel or any error condition.

extern int <enter the name of your function> (int *response

)
{

Becomes...

extern int calc_setup(int *style, double *height, double
*width)

1 Remove only the Initialize and Terminate calls

if ((error_code = UF _initialize()) !=0)
return (0) ;

UF_terminate();

©EDS Open API —
All Rights Reserved Student Guide 2-31

User Interaction

1 Add an integer variable called response. Also create a local
structure to use as client data in the dialog creation call. The
client data pointer is passed into all callback functions so
each callback can change data in the structure. You will set
initial values in the structure as well. Global variables could
also be used.

int error_code = 0, response;
struct calc_data_s
{ int style;

double height;
i/ double width;
72 } calc_data = {-1, 0., 0.};
Y

1 Change the dialog create call to pass the address of the
structure rather than a NULL pointer. Change response to
pass by address.

if ((error_code = UF_STYLER create_dialog (
”xxx_calc_setup.dlg”,
CALC cbs, /* Callbacks from dialog */
CALC_CB_COUNT, /* number of callbacks*/
&calc_data, /* This is your client data */
&response)) !1=0)

1 Extract the style, height and width from the structure and
return a success code (a zero) if OK was selected. Return
non—zero if Back or Cancel was selected.

return (error_code);
becomes:

if(UF_UI_OK == response) {
*style = calc_data.style;
*height = calc_data.height;
*width = calc_data.width;
return(0);

}

return(1);

}

1 Remove the #endif statement

Open API ©EDS . .
2-32 Student Guide All Rights Reserved Unigraphics NX 2

User Interaction

#endif /* DISPLAY_FROM_CALLBACK */

Step 13 Add function calls to the callbacks.

We want to edit the callbacks and add the code to read the
values. We will declare a pointer to our structure in each
callback. The style variable will be set in the style callback. The
height/width will be obtained in the OK callback

1 Find the callback section of code.

/>l< _______________________________________ */
[—— — — ——— UlStyler Callback Functions - - - - —-—————— — — — — */
/>l< _______________________________________ */

1 Create a pointer to the calc_data structure. Declare an array
of two dialog item value structures. Declare an int called
“count’.

int CALC_ok_cb (int dialog_id,
void * client_data,
UF_STYLER item_value_type p_t callback data)

struct calc_data_s
{ int style;
double height;
double width;
} *calc_data_p;
UF_STYLER item_value_type_t dig[2];
int count;
1 Remove only the UF _initialize and UF_terminate calls.
/* Make sure User Function is available. */

if (UUF _initialize() != 0)
return (UF_UIL_CB_CONTINUE_DIALOG);

UF _terminate ();

©EDS Open API —
All Rights Reserved Student Guide 2-33

/e

/
/ /

/ 4
7

User Interaction

1 Add acall to UF_STYLER ask values to access the height
and width. Prior to calling the API function, you must set the
item id and item attribute for both dialog item structures.
You must also set the structure pointer calc_data p to the
client data pointer.

/* ———— Enter your callback code here ————— */
calc_data_p = client_data;

dlg[0].item_id = CALC_HEIGHT;
dig[0].item_attr = UF_STYLER_VALUE;

iz . .
y / dlg[1].item_id = CALC_WIDTH;
7/ dig[1].item_attr = UF_STYLER_VALUE;

UF_CALL(UF_STYLER_ask_values(dialog_id, 2, dlg,
&count));

calc_data_p—>height = dlg[0].value.real;
calc_data_p—>width = dig[1].value.real;

Next, the Back callback will be changed. There is no activity associated with this
call but the initialize and terminate calls should be eliminated.

1 Remove the UF initialize and UF_terminate calls from the

Code from calc_back cb function.

calc back cb o)
- - /* Make sure User Function is available. */

if (UF _initialize() != 0)
return (UF_UI_CB_CONTINUE_DIALOG);

UF_terminate ();

The final callback is the associated with the tool palette for style. The initialize
and terminate calls should be eliminated first. The style value will be obtained
here. A function has been provided to make the OK button active and to
change the data in the Height/Width fields. You will add a call to this provided
function.

1 Remove the UF initialize and UF_terminate calls from the
Code from calc_style_cb function.
calc_style cb

Open API ©EDS . .
2-34 Student Guide All Rights Reserved Unigraphics NX 2

User Interaction

/* Make sure User Function is available. */
if (UF _initialize() != 0)
return (UF_UI_CB_CONTINUE_DIALOG);

UF_terminate ();

1 Create a pointer to the calc_data structure. Declare a dialog
item value structure.

int CALC style cb (int dialog_id,
void * client_data,
UF_STYLER item_value_type p_t callback data)
{
struct calc_data_s
{ int style;
double height;
double width;
} *calc_data_p;

UF_STYLER_item_value_type_t dlg;

1 Extract the style information from the dialog. You must also
set the structure pointer calc_data_p to the client data
pointer.

The toolbox palette identifies the item selected through the
UF_STYLER_VALUE attribute. The integer value is the
zero based index of the item selected. Our

calc data p->style variable will be set to 1 for vertical, 2
for horizontal. This value is the index (dialog) value +1.

/* ———— Enter your callback code here ————— */
calc_data_p = client_data;

dlg.item_id = CALC_STYLE;
dlg.item_attr = UF_STYLER_VALUE;

UF_CALL(UF_STYLER_ask_value(dialog_id, &dlg));

1 Call the routine that activates OK, sets the height/width
values. Only call the routine if the style has changed.

©EDS Open API —
All Rights Reserved Student Guide 2-35

7z
;2
7

User Interaction

/* This callback can be invoked when the user picks on

* a style that is already selected. If the style has

* not changed, don’t set the calc_data_p value or set

* the style dialog.

*/

if(calc_data_p— >style ! = dlg.value.integer + 1) {
calc_data_p—>style = dlg.value.integer + 1;
calc_set_style_dialog(dialog_id, calc_data_p—>style);

}
1 Save your file. You have created a function named calc_setup
/Y in a file named xxx_calc_setup.c. You will call the setup
72 function from calculator.
/Y

Step 14 Change other associated source and header files. Update
the Makefile.

1 Edit the function calc_set_style_dialog.c and change the
include file name. It will be xxx_calc_setup.h. Replace the xxx
with your initials.

1 Edit the calculator.c program and add a call to calc_setup.
Remember to pass the style, height, and width by address.
Also remember that your source file name is different than
your function name!

[Edit calcproto.h to include protoypes for calc_setup and
calc_set style_dialog. (Called by calc_setup)

1 Edit the Makefile and add the functions xxx_calc_setup.o and
calc_set_style_dialog.o to the SUBOBJS list. Use “make int”
to try compiling/linking your program.

Open API ©EDS . .
2-36 Student Guide All Rights Reserved Unigraphics NX 2

User Interaction

Ul Routines for Object Selection

Open API programs allow users to select geometric objects from the current
graphics window. Routines to mask (set a filter of selectable objects) and
prompt for single/multiple object selection are provided.

The following are defined in the header file uf ui.h. The scope parameter is
used to control the selection in assemblies. The parameter must be specified for
both simple parts and assemblies.

e UF UI SEL SCOPE WORK PART — Allows you to select only 0,
objects which belong to the work part. This includes immediate / /
components of the work part. If you select an object occurrence, the y /
prototype is returned. ZL

e UF_UI SEL SCOPE_ANY_IN_ASSEMBLY — Allows you to select
any object or object occurrence in the assembly. No scope restrictions
are applied.

e UF UI SEL SCOPE_ WORK PART AND OCC — Allows you to
select objects which belong to the work part or its subassembly. If you
select an object occurrence, the prototype is returned.

Object selection is controlled by either a list of objects types or through a “mask
triple” structure. The mask triples requires three values (instead of a single
number for object type) to allow access to detail filtering. The header file

uf object_types.h lists the valid objects types for simple filtering used in

UF_UI set_select_mask(). Mask triples are used in UF_UI_set _sel_mask().

o UF_UIL_set_select_mask

e UF_UI _select_with_class_dialog
o UF_UI _select_with_single_dialog
e UF_UIL_set_sel_mask

e UF_DISP_set_highlight

o UF_DISP_set_display

e UF_DISP_add_item_to_display

e UF_DISP_regenerate_display

e UF_DISP_refresh

©EDS Open API —
All Rights Reserved Student Guide 2-37

User Interaction

SUMMARY You used the legacy Ul routines to prompt the

user about open files. You closed and perhaps

saved open parts before opening our calculator
part. You also used the User Interface Styler to
create a custom dialog to prompt for calculator

://2//, style, height, and width.
/
/ 4
/Y In this lesson, you :
e Learned how to open/close and save part
files.

e Learned about memory management for
Open API functions in Unigraphics.

e Learned about the capabilities in the
User Interface Styler API routines, as
well as the User Interface Styler User
Interface Dialog.

Open API ©EDS . .
2-38 Student Guide All Rights Reserved Unigraphics NX 2

Assemblies

Assemblies

Lesson 3

An understanding of the part data model in assemblies is important whether or
not you currently use Unigraphics Assemblies and Components. This lesson will
introduce students to the intricacies of assembles and the Open API functions
provided to work with the assembly model.

OBJECTIVES

Upon completion of this lesson, you will be able to:

Learn the structure of the Unigraphics Assemblies
and Components data model.

Understand the relationship between Instances,

Occurrences, and Prototypes. :/é//;
Become familiar with the function used to create 4 /
an assembly structure. @&

Obtain information about object tags, types, and
subtypes.

©EDS Open API 3-1
All Rights Reserved Student Guide

Assemblies

The handheld calculator to be created will consist of the following parts:

Figure 3—1 The top half of the unit.

777
/ /
/ /

YIS

Figure 3—2 The bottom half of the unit.

3

Figure 3—3 The individual button.

Open API ©EDS . .
3-2 Student Guide All Rights Reserved Unigraphics NX 2

Assemblies

Top—Down Design

The program will use the top-down and design-in-context approaches to
assembly modeling. It will create a component for each of the listed items. The
component for the buttons will be a single button for which we will create a
master component instance set array later in the program.

In order for us to use the top-down and design-in-context approaches, we’ll first
create the assembly structure. Then for the construction of each portion (top,
bottom, buttons), we’ll change the work part to be the component part. We will
also change layers as we create the components so each will be on a separate
layer in the assembly part.

Assembly Terminology and Concepts

The following are important terms used when discussing assemblies:

A tag identifies an object in the data model. The objects are not limited to
geometrical objects, but can include parts, instances, and occurrences.

A Piece Part is the lowest level part in an assembly. It contains model geometry /27
/
/

and feature information that represent the part, but no component objects.
/ /

/
When several parts are brought together into an assembly, the parts and their 7

objects are not copied into the assembly part. Rather, the parts are loaded into
memory, and part occurrences of those parts are put into the assembly part.
For each object in the piece part, an object occurrence of that object is made in
the assembly part.

An Instance is the term used to indicate the placement of a component part
within an assembly part. For each component instance, a part occurrence is
displayed in the assembly part.

Assemblies can be multi—leveled. For example, an automobile can consist of
the body and two instances of an axle assembly part, which itself consists of an
axle and two instances of a wheel assembly part, which itself consists of other

parts. Each instance can have more than one associated part occurrence.

A Component Part is any part used at least once in an assembly. A component
may be a sub-assembly consisting of other, lower-level components. Each
component object in an assembly contains only a link to its master geometry.
When you modify the geometry of one component, all other components in the
session using the same master will automatically update to reflect the change.

©EDS Open API 3-3
All Rights Reserved Student Guide

2
/ /
/ /

YIS

Assemblies

Newer (Unigraphics V10 and after) style components are listed as Type

UF _component _type, Subtype UF part_occurrence_subtype. Rarely, you may
encounter old components, Unigraphics V9 and before. These are stored in the
Data Model as Type UF _component_type, Subtype UF _component _subtype.

A Reference Set is a named collection or set of geometry from a Unigraphics
part. The Reference Set may be used to simplify the representation or display
of the component part in larger or complex assemblies.

The Displayed Part is the part that is being viewed in the Unigraphics graphics
window. It can be a piece part or an assembly.

The Work Part is the part whose geometry or assembly structure is being
modified. The Work Part can be the same as the Displayed Part. When the
display part is an assembly, the work part can be any of the component parts in
the assembly. When the Displayed Part and the Work Part are different,
making modifications to the work part is termed Designing in Context.

A Prototype is a master copy of a part or object occurrence. As mentioned in
the Component Part topic, occurrences are links to master or prototype
geometry. To edit an object, you must make the Prototype part the Work Part
and edit the prototype object.

Open API ©EDS . .
Student Guide All Rights Reserved Unigraphics NX 2

Assemblies

Sample Assembly

Using a simplistic example of an automobile, we can view it in two ways: a
graph and a tree. The logical graph high—lights the “Instances:”

Auto
Instance—3 : Front < > Instance—4 : Rear
Axle

Instance—1 : Left < > Instance—2 : Right
Wheel

Figure 3—4 Logical Graph

From the graph, we get the following occurrence trees:

WHEEL Part—tag—1

7
/

Object—tag—1

/ /

YIS

Figure 3—5 WHEEL.PRT

©EDS Open API 3-5
All Rights Reserved Student Guide

Assemblies

AXLE Part—tag—2

i'IEsEn_ce_-Eg_-T_" ~ Instance—tag—2 |

L

I
_____ -

Part_Occur—tag—1 WHEEL WHEEL Part_Occur—tag—2

Object_occur—tag—1 Object_occur—tag—2

Object—tag—2

Figure 3—6 AXLE.PRT

2
/

/ /

YIS

Open API ©EDS . .
3-6 Student Guide All Rights Reserved Unigraphics NX 2

Assemblies

AUTO Part—tag—3
i'_——nEth?e:" IIEst—aKce_-_—_'i
tag—3 : tag—4
!_ (Front) I Ob] ect—tag— 3 (Rear) JI
AXLE AXLE
Part_Occur—tag—3 Part_Occur—tag—4
i'———nEth?e:" IEst—aKce—-___'i i'———nEth?e:" IEst—aKce—-___'i
| tag—1 | tag—2 | | tag—1 | | tag—2 |
L____ (Left) | L(Right) | L____ (Left) | L(Right) |
WHEEL WHEEL WHEEL WHEEL
Part_Occur—tag—>5 Part_Occur—tag—6 Part_Occur—tag—7 Part_Occur—tag—8
////
3 /
/
’////
Object_occur— Object_occur— Object_occur— Object_occur—
tag—>5 tag—6 tag—7 tag—8
Object_occur—tag—3 Object_occur—tag—4

Figure 3—7 AUTO.PRT

The charts emphasize “Part Occurrences”.

Explanation:

The part WHEEL is loaded and given the Part tag Part—tag—1. It consists of a
single object Object—tag—1.

©EDS Open API 3-7
All Rights Reserved Student Guide

2
/

/
YIS

Assemblies

The part AXLE is loaded and given the Part tag Part—tag—2. It consists of an
object Object—tag—2 for the axle and two instances of the WHEEL piece part.
Instance—tag—1 represents the Left wheel and Instance—tag—2 represents the
Right wheel. Two Part occurrences are created for these and given the tags
Part Occur—tag—1 and Part Occur—tag—2. Similarly, two Object
Occurrences are created for the wheel object, one for each Part Occurrence,
and given the tags Object_occur—tag—1 and Object_occur—tag—2.

The part AUTO is loaded as the Displayed Part and given the Part tag
Part—tag—3. It consists of an object Object—tag—3 and two instances of the
AXLE assembly part. Instance—tag—3 represents the Front axle, and
Instance—tag—4 represents the Rear axle.

Since there are two instances of the AXLE part in the AUTO assembly part,
two Part Occurrences are created for them and given the tags

Part Occur—tag—3 and Part Occur—tag—4. Similarly, two Object
Occurrences are created for the axle object, 1 for each Part Occurrence, and
given the tags Object_occur—tag—3 and Object_occur—tag—4.

Since there are two instances of the wheel part in the AXLE assembly part, two
Part Occurrences are created for them for every occurrence of AXLE in the
session. Thus, 4 more Part Occurrences are created for WHEEL. There is a
Part Occurrence for the Left wheel Instance (Instance—tag—1) of the Front
axle Instance (Instance—tag—3) called Part Occur—tag—5 and a Part
Occurrence for the Right wheel Instance (Instance—tag—1) of the Front axle
Instance (Instance—tag—3) called Part_Occur—tag—6. There is also a Part
Occurrence for the Left wheel Instance (Instance—tag—1) of the Rear axle
Instance (Instance—tag—4) called Part_Occur—tag—7 and a Part Occurrence
for the Right wheel Instance (Instance—tag—1) of the Rear axle Instance
(Instance—tag—4) called Part_Occur—tag—8. Similarly, 4 more Object
Occurrences are created for the wheel object, one for each Part Occurrence of
WHEEL. They are named Object_occur—tag—5, Object_occur—tag—6,
Object_occur—tag—7, and Object_occur—tag—8.

The following table indicates the routines to access given a particular tag when
you want to find a tag of a different type. For example, if you have a “PART
tag” and need the “PART name” you would call UF_PART ask_part_name.

Open API ©EDS . .
Student Guide All Rights Reserved Unigraphics NX 2

Assemblies

TO FIND GIVEN CALL
PART name PART tag UF _PART ask part_name()
PART tag PART name UF_PART _ask_part_tag()
PART OCCUR tag UF_ASSEM _ask_prototype_of_occ()
INSTANCE tag UF_ASSEM ask_parent_of_instance()
UF_ASSEM ask_child_of instance()
OBJECT OCCUR tag 1) UF ASSEM ask _part_occurrence() +
2) UF_ASSEM ask_prototype_of occ()
PART OCCUR tag PART tag UF_ASSEM _ask occs_of part()
PART OCCUR tag UF_ASSEM _ask_ _part_occ _children()
UF_ASSEM _where_is_part_used()
INSTANCE tag UF_ASSEM ask_part_occs_of_inst()
UF_ASSEM _ask_part_occ_of_inst()
OBJECT OCCUR tag UF_ASSEM_ask part_occurrence()
INSTANCE tag PART tag UF_ASSEM cycle_inst_of part()
PART OCCUR tag UF ASSEM _ask_inst_ of " part_occ()
INSTANCE name UF ASSEM ask instance_of name()
OBJECT OCCUR tag 1) UF ASSEM ask _part_ occurrence() +
2) UF_ASSEM ask_inst_of part_occ()
OBJECT tag OBJECT OCCUR tag UF_ASSEM _ask prototype_of occ()
OBJECT handle UF_TAG ask tag_of handle()
OBJECT OCCUR tag | PART OCCUR tag UF_ASSEM cycle ents_in_part_occ()
OBJECT tag UF ASSEM find occurrence()
UF_ASSEM ask_occs_of_entity()
OBJECT handle UF_TAG _ask_tag_of handle()
OBJECT handle OBJECT tag UF_TAG ask handle of tag()
Misc UF_ASSEM is_occurrence()

UF_ASSEM ask_transform_of_occ()
UF_ASSEM part_is_descendant()
UF_ASSEM_count_ents_in_part_occ()

Reference Sets — Whenever the name of a reference set is used in this
document as a parameter to a routine, if the string is NULL/blank, the whole
part is used. If the string “Empty” is used, the empty reference set will be
used.

Displayed Part — Any fully loaded part in memory can be made the Displayed
Part. A partially loaded part can be made the displayed part by opening it.

Work Part — Any fully or partially loaded part which is a member of the
assembly under the Displayed Part can be made the Work Part. Only the
objects of the Work Part may be edited. Object Occurrences can NOT be
edited, but they may be queried to find their data. Thus, the Object

Occurrence of one of the wheel occurrences in AUTO may be read to find what

it’s center is, but the Object Occurrence can not be edited. If the actual object
(prototype) in the WHEEL part is edited, all occurrences of that object will be
updated to show the modification.

©EDS Open API 3-9

All Rights Reserved Student Guide

74

’////

2
/

/ /

YIS

Assemblies

Coordinate Systems

All coordinate system references consist of an array of 6 floating point numbers
which correspond to two unit vectors. The first vector gives the direction of the
X axis, while the second gives the approximate direction of the Y axis. The
routine UF_MTX3 _initialize will always be called to make sure the vectors are
ortho—normal.

When an instance is added to an assembly or moved in an assembly, an Origin
and Matrix are specified. The Origin is the position in the work part where the
absolute origin of the component part or the origin of the component reference
set is placed. The instance will be transformed so that its absolute CSYS or the
CSYS of its reference set (if specified) is matched to this Matrix at the Origin
point.

Open API ©EDS . .
Student Guide All Rights Reserved Unigraphics NX 2

Assemblies

Assembly Routines

UF_ASSEM_create_component_part
UF_ASSEM_create_mc_array
UF_ASSEM_ask_work_part
UF_ASSEM_ask_component_data
UF_ASSEM_ask_mc_array_data
UF_ASSEM_ask_assem_options
UF_ASSEM_is_occurrence
UF_ASSEM_is_part_occurrence
UF_ASSEM_ask_prototype_of_occ
UF_ASSEM_ask_inst_of _part_occ
UF_ASSEM_ask_parent_of_instance
UF_ASSEM_ask_child_of_instance
UF_ASSEM_remove_instance
UF_ASSEM_ask_occs_of_entity
UF_ASSEM_ask_occs_of _part
UF_ASSEM_set_assem_options
UF_ASSEM_cycle_ents_in_part_occ

©EDS
All Rights Reserved

Open API
Student Guide

2
/ /
/ /

YIS

Assemblies

Layer Routines

The following Open API routines are used to control and read the layer settings
for the work part.

e UF_LAYER set_status
e UF_LAYER ask_status
e UF_LAYER_cycle_by_layer

27
/ /
/ 3 /
v
Open API ©EDS . .
3-12 Studerﬁeguide All Rights Reserved Unigraphics NX 2

Assemblies

Object Routines

The following Open API routines relate to objects. There are other Open API
object routines pertaining to object names in a later lesson.

e UF_OBJ_delete_object

e UF_OBJ_ask_status

NOTE

You are strongly advised to avoid doing anything to
non—alive objects unless you are familiar with their use.
UG may delete or reuse these objects at any time. Some
of these objects do not get filed with the part during a
save operation.

o UF_OBJ_set_def_cre_color

e UF_OBJ_set_cre_color

e UF_OBJ_ask_type_and_subtype

NOTE

The types and subtypes this function returns for
expressions and parts are not useful in any other Open
API routines. We provide these types only to allow you to
determine the class of a Unigraphics object through its
identifier (i.e. its tag) which can assist you in determining
the other Open API routines that you can use in
conjunction with the object. For a more detailed
discussion of classes of objects and the Open API
routines available to these objects, please see the Open
API Programmer’s Guide, "The Unigraphics Object
Model”.

©EDS Open API —
All Rights Reserved Student Guide 3-13

2
/ /
/ /

YIS

2
/

/ /

YIS

Assemblies

Code Discussion: calc_assem.c

char
pname [MAX FSPEC SIZE+1], /* new part name */
refset [MAX ENTITY NAME SIZE+1l], /* reference set name */
iname [MAX ENTITY NAME SIZE+1l]; /* name of comp inst */

MAX FSPEC SIZE and MAX ENTITY_NAME SIZE are defined in
uf_defs.h. They define the maximum count of characters allowed for file
specifications and entity names. One extra character is added to account for
the nul character as a string terminator in C.

Check uf defs.h to find what other maximum sizes are defined and use the
definitions in your own projects. The same issues discussed in the last chapter
with typedefs apply here. If you use the #defines, your code will be more
maintainable. If the value of either of these macros changes, your code will still
work.

const int
zero=0, one=1, two=2, three=3;

It is often convenient to place each component on its own layer. We’re going to
put our components on layers one through three.

TIP variables or literals can be used for constant values passed as argu-
ments . A variable, however can be passed by address for use in
legacy routine calls. Using const int one=1 is equivalent to
#define ONE ((int) 1).

double
imat[]={1.0, 0.0, 0.0,
0.0, 1.0, 0.0 }, /* orientation for components */
origin[l={0.0, 0.0, 0.0}; /* origin for each component */

For those of you who are familiar with matrices and transformations, the imat
variable is the first two vectors of an identity matrix. Although you might
expect a matrix to have nine positions, most matrices in Unigraphics are
unitized and orthogonal. Thus, the third column is the cross product of the first
two. Since the last three values can be inferred from the first six, only the first
six are used in UF_ASSEM create_component part.

Open API ©EDS . .
Student Guide All Rights Reserved Unigraphics NX 2

Assemblies

The origin variable is the offset portion (translation) associated with the
component. As geometry is created in each component, it is positioned in
relationship to that component’s coordinate system. For creating a calculator,
we have chosen to set all the components’ coordinate systems to the absolute
coordinate system. We can apply all positioning to the geometry itself rather
than using mating conditions.

tag t
nullt = NULL TAG;

UF_ASSEM_create_component_part accepts an array of tags of geometry to be
transferred from the assembly to the new component. As we are going to
create our own geometry, we’ll pass the address of a tag_t. Rather than pass an
uninitialized variable, we set it to NULL_TAG.

strcpy (pname, “./top _half”);
refset[0] = "\0';
strcpy (iname, “TOP_HALF”) ;

The part name is lower case because the system part files will be in lower case.
The relative directory path is used here but a full path can also be used. The
instance name (iname) can be specified in lower case but will be converted to
upper case by Unigraphics. Here we specify it in upper case to highlight that
fact.

TIP The part name, reference set name, and component name are ar-
guments to UF_ASSEM _create_component_part. But problems
can occur if they are passed in as string literals. String literals
should be used only when a variable is declared as const char. It
may be that Unigraphics tries to add “.prt” which would over-
write memory. Declare character arrays with the MAX size defi-
nitions for these variables and use strcpy to load them.

©EDS Open API —
All Rights Reserved Student Guide 3-15

74

’////

Assemblies

Creating a Component

flag = UF_ASSEM create component part (workp, pname,refset, iname,
units,one,origin, imat,
zero, &nullt, top inst p);

Create a component:

e Make it child of the work part: (variable workp)

e Name the part file in the file system: (strcpy (pname, “top half”))
e Do not bother to define a reference set: (refsetfo] = 7\0’))

e Name the component object: (strcpy (iname, “TOP HALF”))

e Set the construction units to millimeters: (variable units)

e Place the component object on layer 1: (variable one)

e Set the component origin to the absolute CSYS: (array origin)

e Set the component orientation to that of the absolute CSYS: (array

/Y i
;/ 3 ; ma t)
/) e Do not add geometry to the component yet: (variables zero

objects, snul1t no object tags being passed)

e The function will return a tag for the new instance (tag top_inst_p)

We are going to start with the top—down design method where the components
are created without any geometry. Then, using the design—in—context method,
each component, one at a time, will be the work part and geometry will be
created within it at that time.

Open API ©EDS . .
3-16 Student Guide All Rights Reserved Unigraphics NX 2

Assemblies

Activity: Create Assembly Parts for Calculator

Our next task is to define and create the component part files. This is done by
the function calc_assem.

Step 1

Step 2

Step 3

Step 4

Step 5

Copy the template file for calc_assem.c to your
sub—directory.

Edit the program and add code to set the active layers using
UF_LAYER_set_status and create empty component parts
using UF_ASSEM _create_component_part.

Edit the header file calcproto.h and add the calc_assem
prototype.

Edit the file calculator.c and add the call to calc_assem. Note
that calc_assem returns a success/failure status. This status
must be evaluated and a message displayed.

Edit Makefile and add calc_assem.o to the SUBOBJS list and
make a new executable. Use the Assemblies Navigation Tool
(ANT) to view the structure you just created.

There is no geometry yet but, after the program runs, select
Assemblies— Reports— List Components or View—>Assembly Navigator, to see
that the components have been created.

Azzembly M avigatar

Part Mame

= b @ calculator
- (3 bottam_half
B () button
- & [top_hal

1 2

©EDS Open API —
All Rights Reserved Student Guide 3-17

2
/ /
/ /

YIS

Assemblies

Report Object Tags, Types, and Subtypes

Step 1 Copy existing file show_tags.c to your sub—directory.

Step 2 Edit show_tags.c and verify the ufusr_ask_unload function
is present.

Step 3 Add the code necessary to perform the activities stated in
the program comments. Variables are already declared
for most of the necessary UG/Open API function calls.

NOTE Comments starting “/*xxx” indicate that a UG/Open API
function call should be added. Other comments are
included in the program for clarity.

777 Step 4 Create a make file for the program. Name the file select

7 3 / because you already have a file called Makefile in your

/ / : “ - ”»

7, directory. Use “make ext —f select” to create your
executable.

Step 5 Open the part called fest_show_tags.

Step 6 Run the program show_tags. Select objects and observe
their tag and other information reported in the
information window.

Step 7 Optionally, create some new objects and run the program
again.

Step 8 Close the part without saving.

Open API ©EDS . .
3-18 Student Guide All Rights Reserved Unigraphics NX 2

Assemblies

SUMMARY

You created an empty assembly using the
Top—down approach. The master model
calculator now has three component parts,
top_half, bottom_half, and button.

In this lesson, you :

e Used some of the assembly routines to
create a small assembly.

e Performed an introductory activity to
obtain information about object tags,

types, and subtypes. 7,
;3"
v

©EDS Open API 3-19

All Rights Reserved Student Guide

Assemblies

(This Page Intentionally Left Blank)

27
/ /
/ 3 /
v
Open API ©EDS . .
3-20 Studerﬁeguide All Rights Reserved Unigraphics NX 2

Expressions

Expressions
Lesson 4

Expressions in Unigraphics are arithmetical or conditional statements that can
be used to control the characteristics of a part. Expressions can define many
dimensional values of a model. For example, expressions are used for the scalar
values or positioning dimensions of a feature or dimensional constraints of a
sketch.

OBJECTIVES Upon completion of this lesson, you will be able to:

e Create and modify expression strings.

e Create a conditional expression.

77
Y,
v

©EDS Open API 4-—1
All Rights Reserved Student Guide

%<
>,
v

Expressions

Expression Definition

An expression is a statement defining a relationship. An expression relation is both the
left—hand side and right—hand side of an expression equation (i.e. a=b+c). All
expressions have a value (a number which may or may not have a fractional part)
which is assigned to the variable on the left side of the expression. To obtain this value,
the system evaluates the right side of the expression, which is either a mathematical or
conditional statement. The left side of the expression must always be a single variable.
If the expression name is to be used as a variable in another expression (on the right
side), it must be defined prior to its usage.

Expression names are alphanumeric strings of text, but they must begin with a letter.
An underscore, “_”, may also be used as a “word delimiter” within an expression name
for clarity (no embedded spaces). Expression text is treated by the expression system
inside of Unigraphics as case sensitive, so the variable name “X1” is different from

“Xl ’5.

Conditional Expressions

You may create conditional expressions by using the if/else structure. The if/else
expression uses the following syntax:

VAR = if (expry) (exprs) else (expr3)
For example,
width = if (length<8) (2) else (3)

means that:
if length is less than 8, width will be 2;
if length is greater than or equal to 8, width will be 3.

A full description of expressions can be found in the Documentation under
Design—Modeling. The documentation describes the interactive creation of
expressions, the operators (addition/subtraction, etc.), and the built in functions
(e.g., abs()) available.

The calculator we are going to build is going to have a top half that is five
millimeters thick and a bottom half that is five millimeters thick. Thus, the
entire thickness will be ten millimeters.

Open API ©EDS . .
Student Guide All Rights Reserved Unigraphics NX 2

Expressions

All heights and widths will be calculated from the height and width that the
user specifies (from calc_setup). Expressions will be used to store the initial
values of the calculator height and width. Once the calculator is modeled, the
size may be changed easily by the user simply by interactively changing the
height and width expressions.

Now that the assembly structure has been set up, it is time to create the model
geometry in the component part files. The first thing to do is to create a
fundamental set of expressions that will control the model feature geometry.
After that, editing the expressions will cause changes to the appropriate
component model geometry.

77
Y,
v

©EDS Open API 4=-3
All Rights Reserved Student Guide

Expressions

Expression Routines

The following routines can be used to create and manipulate expressions from
the Open API:

e UF_MODL_create_exp

e UF_MODL_ask_exp

e UF_MODL_edit_exp

e UF_MODL_delete_exp

e UF_MODL_eval_exp

e UF_MODL_export_exp

e UF_MODL_import_exp

e UF_MODL_rename_exp

o UF_MODL_create_exp_tag

e UF_MODL_ask_exp_tag_value
e UF_MODL_delete_exp_tag

e UF_MODL_ask_exp_tag_string
e UF_MODL_dissect_exp_string
e UF_MODL_update

/,
777
v 4 7
/ /
Y
Open API ©EDS . .
4-4 Student Guide All Rights Reserved Unigraphics NX 2

Expressions

Expressions for the calculator

The calculators will have the following expressions, as shown in the following
figures. The hole is going to be a little larger than the button (for clearance
purposes). The “outside” buttons are positioned using the Border expression.

<—Body_width—

—|——Border —pc-heignht

lcd_pc_height —

—Border

lcd_height

=== === Body_height
=l=======
Button_height |S=====e== | Border
===
=== ==

Button_spacing—

Button_width

7
s 4 7

/ /
Figure 4—1 Horizontal Calculator /L4

©EDS Open API 4—-5
All Rights Reserved Student Guide

%<
>,
v

Expressions

Bodg_width—w

Border I—Border
— lcd_pc_height f T
y ,
ch_w?ight —pc_height
L—Border

Body_height

Button_spacing

Button_height-

Border

1

Figure 4—2 Vertical Calculator

Use the previous figures to develop the logic for the calculator expression
creation program. The Border expression will be a fixed value of 5 mm. The
photo cell height (pc_height) will be a fixed value of 8 mm. The liquid crystal
display height (Icd_height) will be 20 mm. The distance between the display
and photocell (Icd_pc_height) will be a fixed value of 12 mm. The values of
Body width and Body_height will be the data obtained from the calc_setup
routine. The Button_height and Button_width expression will be driven by the
overall body height and width.

The Button_width expression will vary with the style of calculator. The spacing
will be .25 of the Button_width. The vertical calculator has 5 buttons across
and 4 spaces. The 4 spaces, at .25 of the width per space, are equivalent to 1
button. For a vertical calculator, the expression for (width/#buttons) is:

Button width = (Body width-2.0*Border)/ (5.0 + 1.0)

Open API ©EDS . .
Student Guide All Rights Reserved Unigraphics NX 2

Expressions

Similarly, the width for the horizontal calculator must accommodate 8 buttons
and 7 spaces (at .25 of the width per space). The 7 spaces are equivalent to 1.75
buttons. For the horizontal calculator (width/#buttons) is:

Button width = (Body width-2.0*Border)/ (8.0 + 1.75)

The denominators, of course, can be simplified to 6.0 and 9.75 for the vertical
and horizontal calculators, respectively.

An intermediate expression, Bh1, will be used to keep the string length of the
Button_height expression less than 132 characters. Bh1 is the entire height of
the calculator minus the heights for the photocell and lcd windows and the
space between them. Three times the border size is subtracted to account for
the top, bottom, and space between the lcd and the button array.

Now, if the style is vertical (Style=1), the buttons are nine high. There are 8
spaces to be considered for the space between the buttons and each space is
25% of the button width. Thus, the button height is the length defined by Bhl
minus the spacing between the buttons divided by the count of buttons.
Arithmetically, it looks like this:

Button height = (Bhl - (9.-1.)*0.25*Button width) /9.
For the horizontal calculator, there are 6 buttons high. It’s height would be:
Button height = (Bhl - (6.-1.)*0.25*Button width) /6.

In actual usage, (9.0—1.0)*0.25 should be shortened to 2.0 and (6.0—1.0)*0.25

should be shortened to 1.25. /2
s 4 7
/7
It is important that Button_height is defined after Button_width and Bhl. v

Remember, if an expression’s definition depends upon other expressions, those
expressions must already exist before the new expression is created.

©EDS Open API 47
All Rights Reserved Student Guide

%<
>,
v

Expressions

Code Discussion: calc_expr.c
The routine will set up expressions based on the style of calculator selected.

/* Create expression called Style. Set its value to the function arg.
*'style’. Check the return flag and exit if it is nonzero.
*/

sprintf (estr,”Style=%d"”,style) ;

The line sprintf(estr, “style=%d”, style); translates the integer value of style
to a string prefixed by the name styie=. The character pointer estr should
point to an array large enough to contain the translated string. The expression
is either “Style=1" or “Style=2". The expressions for

e Height

e Width

e lcd height (liquid crystal display window height)
e pc_height (photocell window height)

e lcd pc height (vertical distance between liquid crystal display and
photocells)

Border

are also straightforward and follow Style in the function.

strcpy (estr, “Across=1if (Style==1) (5)else(8)") ;
flag = UF_CALL(UF_MODL create exp(estr));
if (flag) return (flag);

Across is going to be used for the buttons and their holes. It depends upon
Style and therefore must be defined after the Style expression has been
registered (created). What this expression says is “If Style is equal to 1, Across
is equal to 5. If Style is not equal to 1, Across is equal to 8”.

Open API ©EDS . .
Student Guide All Rights Reserved Unigraphics NX 2

Expressions

Activity: Create calc_expr

Step 1 Copy the template file calc_expr.c to your sub—directory.

Step 2 Create the expressions for the calculator creation based
on the style of calculator.

Step 3 Change the calculator program to call the expression
creation routine.

Step 4 Add the prototype to the header file calcproto.h.

int calc_expr(int, double, double);

Step 5 Edit Makefile and add calc_expr.o to the SUBOBJS list
and make a new executable. Use the expression browser

under Info—Expression—>List All to verify the
expressions have been created.

77
Y,
v

©EDS Open API 4—-9
All Rights Reserved Student Guide

Expressions

SUMMARY You created the expressions necessary to

control the calculator expression. The
expressions were created in the calculator part.

In this lesson, you :

e Generated expressions using data from
the custom dialog.

e Generated expressions using constant
values.

e Created conditional expressions.

%<
>,
v

Open API ©EDS . .
4-10 Student Guide All Rights Reserved Unigraphics NX 2

Modeling

Modeling

Lesson 5

This lesson discusses the construction of the model geometry and the manipulation of
the components. Geometry construction will be accomplished through feature—based
modeling. The Open API Modeling routines allow for the creation, editing and
inquiry of objects in the part database.

OBJECTIVES Upon completion of this lesson, you will be able to:

e Create primitive and form features.

e Understand the relationship between Body,
Feature, Face and Edge.

e Use the linked list of tags as output or input to
modeling functions.

e Create/remove names from objects.

e Cycle the data model to find objects based on
names.

7
; 5
7

©EDS Open API 5—1
All Rights Reserved Student Guide

S
/B2

/ /

A

Modeling

Geometry Creation in Context

Before creating the model geometry for the calculator, we must control the
context of the model geometry creation. Geometry creation will be done in
each component individually. The assembly we have created has an assembly
part file and three component parts. The calculator part (assembly) is the
current work and display part. To create geometry in a component part, we
must change the work part to the component part, then create the appropriate
component model object(s).

Each component part is positioned in the assembly using an instance. We
obtained the instance tag when creating the component parts. The instance
positions a child part relative to a parent part. The geometry can be created in
the appropriate part file by making each instance’s child part the work part.

Open API ©EDS . .
Student Guide All Rights Reserved Unigraphics NX 2

Modeling

Model list routines

The model routines the create or provide object/feature tags currently use the
uf_list_p_t structure to provide data. These routines could be obsoleted in the
future in favor of arrays. The following routines show how to create a
uf_list_p_t structure, populate the list, and deal with the linked lists.

These routines are defined in uf_modl_utilities.h and documented under
uf_modl_general:

UF_MODL_create_list
UF_MODL_put_list_item
UF_MODL_ask_list_count
UF_MODL_ask_list_item
UF_MODL_ask _list_item
UF_MODL_delete_list
UF_MODL_delete_list_item

©EDS
All Rights Reserved

e
75

A

Open API -
Student Guide 5=3

Modeling

Code Discussion: calc_model.c

/* Set the variable ’'parent’ to the current work part */
parent = UF_ASSEM ask work part();

Save the current work part tag (the root of the assembly tree) so we can restore
the work part. We will be changing the work part to each component part to
create geometry and should return the work part to it’s original value when
completed.

In order to set the display and work part, we need to get the tag of the part.
UF _ASSEM ask _child of instance gets the tag of the part from the associated
component object.

/* Obtain the top piece part tag (wpart) using ask child of instance

* (check the return tag validity). XXX Change the display part to the
* top piece part. Check return code)
*/

wpart = UF_ASSEM ask child of instance(top_ inst);

if (NULL TAG == wpart) return (1);

flag = UF_CALL(UF_PART set display part (wpart));
if (flag) return (2);

There is a UF_ASSEM set_work_part function but we don’t need it because
UF_PART set_display part, discussed in a previous chapter, sets the work part
to the new displayed part.

TIP Whether UF_PART_set_display_part sets the work part is controlled by
assembly options. If you want to make sure, use UF_ASSEM_set_as-
sem _optionsin calc_assem.

/* Create the interpart expressions for the work part. Check return
* code. Use UF MODL update after creating the expressions.
*
/
flag = calc_interpart expr();
if(flag) return(flag);
flag = UF_CALL(UF_MODL update());
if(flag) return(flag);

In order for us to construct our model, we first create the expressions that the
model depends upon. Interpart expressions, or IPE, is a powerful, fully

////, associative, optional approach to controlling geometry in an assembly. The
75 7 interpart expressions need to be created in each of the piece parts, by
7./ sequentially making them the displayed and work part.

5-4 Stud(e)rﬁeg}ﬁgg All Rigl%f ggserved Unigraphics NX 2

Modeling

/* Set the solid body creation color to white */
UF_CALL(UF_OBJ set cre color(
UF_solid type,
UF _all subtype,
UF_OBJ solid body property,
UF_OBJ WHITE));

Sixteen basic color values, and the current maximum number of colors, are
defined in uf obj types.h.

Object types and subtypes are defined in uf object types.h.

Object properties are also defined in uf obj.h. The property is currently
UF_OBJ no_property for everything except solids. Solids have either
UF_OBJ solid_body property or UF_OBJ sheet body property.

In the documentation for uf obj.h near the bottom of the page, above

uf obj_errors.h, there is a link to information about the proper usage of type,
subtype, and properties. The parameters above were chosen with guidance from
that page.

calc_model sets the default object creation color to various values. Notice that
the function used is specific to the work part.

Geometry will be differently colored in each component, making solids visually
easier to identify.

After setting a color, changing display and work part, and creating expressions
in each part, there is a call to a function that actually creates geometry. At this
time we will leave all such function calls commented out. We will uncomment
the calls as each function is defined.

S
B2

/ /

A

©EDS Open API 5-—5§
All Rights Reserved Student Guide

Modeling

Activity: Create Routine calc_model

Step 1 Copy the template file calc_model.c to your sub—directory.
Edit the program and add the appropriate Open API
calls.

NOTE Leave the calls to calc_model top, calc_model _bottom,
calc_model_button, and calc_comp_array commented out
for now.

Step 2 Add a call to calc_model in your calculator program.

Step 3 calc_model requires a uf_list_p_t as an input parameter.
Add a call to UF_MODL_create_list, using the address of
holes, a variable that was declared earlier.

Step 4 Add a call to free (delete) the list at the corresponding
comment later in calculator.c.

Step 5 Edit calcproto.h and add the prototype for the new
routines.

int calc_interpart_expr(void);
int calc_model(tag_t, tag_t, tag_t, uf list p_t);

Step 6 Edit the Makefile and add calc_model.o to the SUBOBJS
list and make a new executable.

To check the expressions, use Info—Expression—List
All in Assembly.

Do not save the part files created!

;////f
/ S’
7,
Open API ©EDS . .
5-6 Student Guide All Rights Reserved Unigraphics NX 2

Modeling

Calculator Top Half

The top half of the calculator is made from a hollowed block with rectangular
pockets and blended edges. The modeling routines to create and manipulate
these and other features are provided. The Open API Reference
documentation contains the complete list of modeling routines under various
headings such as uf modl and uf modl _features. The routines are prefixed by
UF_MODL . Prototypes and #define variables are found in the header file
uf modl.h and uf object_types.h.

Figure 5—1 The top half of the unit

The dimensions for many of the UF_MODL create routines use character

strings for data. This allows the input of a complete expression (e.g. 7
“bl_hgt=3.125”) or just the rhs (e.g. “3.125”, “dia”). Unigraphics will createa /" g /
’p’ number expression when just the right—hand side (rhs) is used (defined). “

©EDS Open API 5-7
All Rights Reserved Student Guide

7
; 5
7

Modeling

Several inquire routines with the prefix “UF_MODL _ask_” return lists of items.
Since identifiers exist for bodies, features, faces and edges, care must be taken
to use the correct identifiers as input into other “UF_MODL xxxx” routines.
The routines that return bodies, faces and edges contain identifiers that can be
used throughout the Open API. But the routines that return feature identifiers
can be used almost solely within other Open API functions with the prefix
“UF_MODL ” that require a feature for input.

For example, calling UF_MODL _ask body_feats() returns a list of features that
are connected to the input body identifier. The identifiers contained in this list
are valid in the following routines only:

UF_MODL ask xxxx_parms()
UF_MODL ask feat xxxx()
UF_MODL move_feature()
UF_MODL delete_feature()

A common mistake in using the UF_MODL_xxxx routines involves the
hierarchy of the solids created. The descending order is body, feature, face,
and then edge. When you create the first primitive, you must realize that the
identifier returned is not a body identifier. To get the body, you must first call
UF_MODL ask feat body() to get the proper body identifier.

The “UF_MODL _ask " routines that inquire about bodies, faces, edges, etc. do
not guarantee a consistent order with respect to location in a list. For example,
if you get the faces on the block, a specific face is not always found at the same
location in the list. The “UF_MODL _ask_feat_” routines do return features in
a consistent order.

Target Solid for an Operation

When you have more than one solid in a part and you wish to perform an operation on
a solid such as adding a feature or doing a boolean, you must identify which solid is the
target for the operation. Use the function UF_MODL_active_part to identify the
target solid. You do not need to identify a solid if it is the only solid or if it was the last
solid you worked on interactively.

Open API ©EDS . .
Student Guide All Rights Reserved Unigraphics NX 2

Modeling

Model Creation Routines

The following subset of routines demonstrate feature model creation
capabilities available in the Open API (see uf_modl_features):

UF_MODL_create_blockl
UF_MODL_create_blend
UF_MODL_create_cyll
UF_MODL_create_hollow
UF_MODL_create_linear_iset
UF_MODL_create_rect_pocket
UF_MODL_create_rect_slot
UF_MODL_create_simple_hole
UF_MODL_operations
UF_MODL_active_part

©EDS
All Rights Reserved

e
75

A

Open API -
Student Guide 5-9

Modeling

Model inquiry routines

The following subset of routines provide information about features and objects
Unigraphicsin the Unigraphics Part file. (see uf_modl)

e UF_MODL _ask_feat_body

e UF_MODL_ask_body_type

e UF_MODL_ask_body_faces

e UF_MODL_ask_body_edges

e UF_MODL_ask_edge_body

e UF_MODL_ask_edge faces

e UF_MODL_ask_edge_type

e UF_MODL_ask_edge_verts

e UF_MODL_ask_face_body

e UF_MODL _ask _face_edges

e UF_MODL_ask face_data

e UF_MODL _ask feat faces

e UF_MODL_ask_block_parms
e UF_MODL_ask_minimum_dist
e UF_MODL_ask_simple_hole_parms

7
; 5
7

Open API ©EDS . .
5-10 Student Guide All Rights Reserved Unigraphics NX 2

Modeling

Object Name Routines

Unigraphics allows geometric and group objects to be named. Names can be a
maximum of 30 characters. The names can be used in interactive selection and

cycling of the data model. (see uf_obj)

e UF_OBJ_set_name
e UF_OBJ_ask name
e UF_OBJ_delete_name

e UF_OBJ_cycle_by_name

©EDS
All Rights Reserved

e
75

A

Open API -
Student Guide 5-11

S
/B2

/ /

A

Modeling

Code Discussion: calc_model_top.c

edge len pl0]
edge len p[1]
edge len pl[2]

&edge len(0] [0];
&edge len(1] [0];
&edge len([2] [0];

flag = UF_CALL(UF_MODL create blockl (UF NULLSIGN, corner,
edge len p, &top half));

This is the function that creates a block. We will use UF_NULLSIGN to just
create a feature rather than performing a boolean with another object.

Unigraphics allows you to designate one solid as a target solid so that boolean
operations can be applied as each tool is created. See UF_MODL _active part,
under uf_modl

TIP Note that the edge lengths areinput as strings rather than numbers. This en-
ables the programmer to use expressions for the edge lengths. Asyou can see
from the code preceding this line, we are taking advantage of this capability.

Open API ©EDS . .
Student Guide All Rights Reserved Unigraphics NX 2

Modeling

/* Obtain the body tag from the feature tag. Assign the name
* TOP_HALF to the body. Check the return code.
*/
flag
flag

UF CALL(UF MODL ask feat body (top half, &body)) ;
UF_CALL(UF_OBJ_ set name (body,”TOP_HALF”));

The tag returned by UF_MODL _create_blockl is a tag to a feature. The first
line of code gets the body of a feature. The body object, not the feature, should
be named. The second line of code assigns a name to the solid body.

flag = UF_CALL(UF_MODL ask body edges (body, &listl));
Now we fill our list with the edges in the body.

We want to blend the four short edges that go from the back of the block to the
front. In order to do this, we have to identify those edges. We’ll do so by
creating a list of all the edges in the body and then finding which edges are five
millimeters long.

The Open API provides list handling facilities. With them, you can put items
on a list, remove items from a list, ask a list how many items it has, and
sequentially process the items on a list.

NOTE The list structure will be obsoleted in favor of arrays of
tags.

flag = UF_CALL(UF_MODL ask list count (listl, &ecount));

We’re going to use a loop to inquire about each edge. This function tells us
how many edges we’re going to loop through.

flag = UF_CALL(UF_MODL create list (&list2));

When we find an edge to be blended, we’re going to put it on this second list.
UF _MODL create_list creates a list and returns its pointer. We didn’t need to
create listl because it is created and allocated by the routine that returns the
list. (In this case, UF_MODL _ask_body_edges.)
/////

A

©EDS Open API —
All Rights Reserved Student Guide 5-13

Modeling

S
/B2

/ /

A

for(i=0; i < ecount; i++) {
/* Get the edge (list item) and check return code. */
flag = UF_CALL(UF_MODL ask list item(listl,i,&edge));

/* Get the edge vertices. Check return code. */
flag = UF_CALL(UF_MODL ask edge verts(edge,ptl,pt2, &vcount));
if (flag)
UF CALL(UF MODL delete list(&listl));
UF CALL(UF MODL delete list(&list2));
return (flag);

/* Put item on list2. Check return code. */

if (fabs (fabs (pt1[2] - pt2([2]) - 5.0) < 0.001) {
flag = UF_CALL(UF_MODL put list item(list2,edge));
if (flag)

UF CALL(UF MODL delete list(&listl));
UF CALL(UF MODL delete list(&list2));
return (flag);

This loop checks every edge in listl. If the edge is five millimeters long in Z, it
is added to list2.

flag = UF_CALL (UF_MODL create blend(“5.0”,1list2,allow_smooth,
allow cliff,allow notch,vrb tol, &blendl));

Here, we create a five millimeter radius blend on the edges in list2. Note that
the radius is input as a string. We could have used a complex expression so that
the blend would change with the calculator height or width.

flag = UF _CALL(UF MODL delete list(&listl));

if (flag)
UF CALL(UF MODL delete list(&list2));
return (flag);

flag = UF_CALL(UF_MODL_delete_ list (&list2));
if (flag) return (flag);

The next body of code blends the edges of the top face. In preparation, listl
and list2 are deleted. listl is refilled and list2 is recreated. We refill listl
because the previous blending operation created new edges. The edges to be
blended are those whose start and end vertices both have a Z coordinate of
10.0.

Open API ©EDS . .
Student Guide All Rights Reserved Unigraphics NX 2

Modeling

After the edges are blended, listl and list2 are reset again. listl is then filled
with the faces of the body and list2 contains the face whose normal has a Z
component of —1.0.

flag = UF_CALL(UF_MODL create hollow(“1.0”,list2, &hollow)) ;

Hollow out the face(s) in list2. Although the remaining shell is coded to have a
thickness of one millimeter, the thickness could have been defined by a more
complex expression.

/* Create the holes (pockets) */
/* flag = calc_model top holes (body,holes) ;*/
if (flag != 0) return (flag);

The basic body of the top half of the calculator has been created.
calc_model_top_holes will create the holes (as rectangular pockets) for the
windows and the buttons. The routine will be uncommented in another
exercise.

©EDS Open API —
All Rights Reserved Student Guide 5-15

Modeling

The calc_model_top routine, before the call to calc_model top holes, generates
a hollowed, blended shape that looks like the following (from a TOP view):

S
4

V
\

Figure 5—2 Calculator Top before pockets

/////
75

A

Open API ©EDS . .
5-16 Student Guide All Rights Reserved Unigraphics NX 2

Modeling

Activity: Create the Calculator Top

Step 1

Step 2

NOTE

Step 3

Step 4

Step 5

Copy the template file calc_model_top.c to your
sub—directory.

Edit the file and add the Open API function calls to
create the block, blend the correct edges, and perform the
hollow.

Do not uncomment the call to calc_model top _holes at
this time.

Edit your calc_model.c routine and uncomment the call to
calc_model_top.

Edit calcproto.h and add the prototype for calc_model_top.

Edit the Makefile and add calc_model_top.o to the
SUBOBJS list and make a new executable.

Do NOT save the part files created!

7
; 5
7

©EDS Open API —
All Rights Reserved Student Guide 5=17

Modeling

Code Discussion: calc_model_top_holes.c

/* Get the body faces. Obtain the count of faces (count) */
flag = UF_CALL(UF_MODL ask body faces (body, &listl));
if (flag) return (flag);

flag = UF_CALL(UF_MODL ask list count (listl, &count)) ;
if (flag)

UF CALL(UF MODL delete list(&listl));

return (flag);

}

/* Loop through the faces and check the face data for a planar face
* (UF_bounded plane subtype) with a normal in the +Z

*
/
for(i=0; i < count; i++) {
tag t
face;
int ftype, /* face type */
dsense; /* face direction sense */
double
pt1l31, /* coordinates of vertex */
nrm[3], /* Face normal direction */
box [6], /* face boundary */
radil, /* face major radius */
rad2; /* face minor radius */

/* Extract a face from the list. Check the return code. */
flag = UF_CALL(UF_MODL ask list item(listl,i,&face));
if (flag)

UF CALL(UF MODL delete list(&listl));
return (flag);

}

/* Obtain the face data. Check return code. */
flag = UF_CALL(UF_MODL ask face data(face, &ftype,ptl,nrm,box,
&radl, &rad2, &dsense)) ;
if (flag) {
UF CALL(UF MODL delete list(&listl));
return (flag);

}

if (ftype == UF bounded plane subtype) {

if (fabs (nrm[2] - 1.0) < 0.001) {
facel = face;
break;

The above code finds the face upon which the pocket features will be placed. A

s list of faces is created. Then the list is cycled until a face is found that is a
y / bounded plane (if(ftype == UF_bounded_plane_subtype)) and has a normal of
/ =
7/ 7=1.0.
5—-18 Open API ©EDS

Student Guide All Rights Reserved Unigraphics NX 2

Modeling

/* Evaluate the expressions for Body width, Body height, pc height,
* lcd height, lcd pc height, Button width, and Button height. Check
* return codes
*/
flag

UF_CALL(UF_MODL eval exp(”Body width”, &body width));

In order to create our pocket features, calculations must be made based upon
our expressions. UF _MODL eval_exp takes the name of an expression and
returns its numerical value. We need the values of seven of our expressions.

/* Create the 1st button pocket. Use a corner and floor radius of
* 70.0” and a taper angle of 1.5. Check the return code.

*/

strcpy (poclen[0],”Button width+0.5”") ;
strcpy (poclen[1l],”Button _height+0.5”) ;

location[0]
location[1]

0.5* (button width) ;

5.0 +
5.0 + 0.5* (button height) ;

A pocket is initially placed by its center. Here, we set the location (using the
data from the evaluated expressions) so that the left and bottom edges are five
millimeters from the origin of the working coordinate system. We will want to
know where these edges are so that we can find them later.

flag = UF_CALL(UF_MODL create rect pocket (location,axis,x dir,
poclen p, “0.0”,“0.0”,"“1.5"”,facel, &featl));

Here is where the first of three pockets, the photocell pocket, is created. The
feature location is the center of the top of the pocket. The axis points directly
into the placement face. The X, Y, and Z lengths are set by expressions. The Z
length is set to 2 so that the pocket will go all the way through the top half body.

The side and floor radii are expressions set to zero and the taper is an
expression set to 1.5 degrees. The taper angle is set because this part will be
made by injection molding and the taper is needed for the part to be ejected
from the mold.

For the pocket feature, tapers go inward. So this pocket will be larger on the 7

placement face than on the back face. Negative tapers are not permitted with y /

the rectangular pocket creation function. ’/// 77
©EDS Open API 5—-19

All Rights Reserved Student Guide

S
/B2

/ /

A

Modeling

flag = UF _CALL(UF _MODL create linear iset (0, “Across”,6 bspacex,
“Up” ,bspacey, listl, &featl));

Create a linear instance set (rectangular feature instance array) of the button
hole using the general method. The expressions Across and Up control the
number of holes created. bspacex and bspacey are defined in the previous lines
of code and are used so that this command is more readable. The first button
hole feature has been placed in the list list1.

The calc_model top holes program will result in a top_half component that
appears as follows:

a D)
jS 2

Figure 5—3 Calculator top with pockets

Open API ©EDS . .
Student Guide All Rights Reserved Unigraphics NX 2

Modeling

Activity: Add Holes to the Calculator Top

Step 1

Step 2

Step 3

Step 4

Step 5

Copy the template file calc_model_top_holes.c to your
sub—directory.

Edit the file and add the Open API calls to create the
pockets (holes).

Edit your calc_model_top.c routine and uncomment the
call to calc_model_top_holes.

Edit calcproto.h and add the prototype for
calc_model_top_holes.

Edit the Makefile and add calc_model_top_holes.o to the
SUBOBJS list and make a new executable.

Do NOT save the part files created!

7
; 5
7

©EDS Open API —
All Rights Reserved Student Guide 5-21

Modeling

Calculator Bottom Half

The bottom half of the calculator starts with a primitive block. It is blended
and hollowed similarly to the top half. No pockets (photocell or button holes)
are created in the bottom half component.

Figure 5—4 Calculator bottom half

Code Discussion: calc_model_bottom.c

The calculator bottom routine does not introduce any different concepts from
those discussed in the calc_model top.c section. See the discussion on

;///// calc_model_top.c if you have any questions.
/ _ _
/ S’
7
Open API ©EDS . .
5-22 Student Guide All Rights Reserved Unigraphics NX 2

Modeling

Calculator Button

The button will be a simple block with a through slot cut in it. The through slot
can be used to separate the standard operation of a button from its shifted or

“2nd” operation.

Figure 5—5 Button component

©EDS
All Rights Reserved

7
; 5/
7

Open API -
Student Guide 5-23

Modeling

Code Discussion: calc_model_button.c

This function has similarities to the previous routines that created blocks and
added features. It searches the body to find the slot limits by finding through
faces (facel and face2) by examining normals. The placement face (face3) is
also determined by its normal vector orientation.

facel

face3

face2
Figure 5—6 Faces used in slot feature creation

axis[0] = 0.0

axis[1] = 0.0

axis([2] = 1.0

x dir[0] = 1.0

x dir[1] = 0.0

x dir[2] = 0.0
77)) o o
75 7 In this case, the tool axis points in the same direction as the normal to the
/ lacement face. The slot direction i ifies as a vector in the X direction.
///A placement face e slot direction is spec

Open API ©EDS . .
5-24 Student Guide All Rights Reserved Unigraphics NX 2

Modeling

Activity: Create Bottom Half and Button Geometry

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Copy the template file calc_model_button.c to your
sub—directory.

Edit the file and add the Open API function calls needed
to create the geometry.

Copy the completed file calc_model_bottom.c from the
solution directory.

Uncomment the calls to the button routine bottom
routines in calc_model.c

Edit calcproto.h and add the prototypes for the button
and bottom routines.

Edit the Makefile and add calc_model_button.o (and
calc_model_bottom.o, if necessary)to the SUBOBJS list
and make a new executable.

Do NOT save the part files created!

e
75

A

©EDS Open API —
All Rights Reserved Student Guide 5=25

S
/B2

/ /

A

Modeling

Code Discussion: calc_comp_array.c

linear mc.array subtype = UF ASSEM linear array;
linear mc.master component = NULL_ TAG;

linear mc.template component = button inst;
strcpy(inst array name, ”BUTTON ARRAY”) ;

linear mc.array name = inst array name;

We will be creating a linear array of the button instance and naming it
“BUTTON_ARRAY”. The master component member of the structure is
not used for this type of component array.

/* Set the linear mc.dimensions[0..1] values to the tags of the
* Across and Up expressions.
*
/
flag = UF_CALL(UF_MODL create exp tag("Across”,
& (linear mc.dimensions[0])));
if (flag) return (flag);
flag = UF_CALL(UF_MODL create exp tag("Up”,
&(linear mc.dimensions[1])));
if (flag) return (flag);

The structure refers to the expressions using a tag rather than a character string
as seen in the expression lesson. Here we create the tags from the names.

/* Create the master component array. Check return codes. */
flag = UF_CALL(UF_ASSEM create mc_array(&linear mc, &array));
if (flag) return (flag);

This creates an array of components using the same expressions that were used
to create the button hole feature iset. Another method, associating a
component with an instance array, was not used, because that method requires
the component be mated to a face that belongs to the feature instance array
only.

Open API ©EDS . .
Student Guide All Rights Reserved Unigraphics NX 2

Modeling

Activity: Create Routine calc_comp_array

Step 1 Copy the template file calc_comp_array.c to your
sub—directory. Edit the program and add the
appropriate Open API calls.

Step 2 Uncomment the call to calc_comp_array in your
calc_model program.

Step 3 Edit calcproto.h and add the prototype for the new
routine.

int calc_comp_array(tag_t);

e
75

A

©EDS Open API —
All Rights Reserved Student Guide 5=27

S
/B2

/ /

A

Modeling

Step 4 [Edit the Makefile and add calc_comp_array.o to the
SUBOBJS list and make a new executable. Use the
Assembly Navigation Tool (ANT) to view the assembly
part structure created.

Do not save the part files created!

A hidden edge removed TFR—ISO view of the model should display something
similar to the following.

Figure 5—7 Completed Calculator model

Open API ©EDS . .
Student Guide All Rights Reserved Unigraphics NX 2

Modeling

SUMMARY You created a parametric solid bodies using
feature based modeling.

In this lesson, you :

e Exported expressions from the master
part and imported to component parts.

e Created parametric solid primitives.
e Applied form features to your solids.
e Cycled the data model for bodies

e Cycled through faces and edges to
identify desired geometry.

7
; 5
7

©EDS Open API —
All Rights Reserved Student Guide 5-29

Modeling

(This Page Intentionally Left Blank)

S
/ /
/ S’
AL
Open API ©EDS . .
5-30 Student Guide All Rights Reserved Unigraphics NX 2

Dimensioning

Dimensioning

Lesson 6 '//////
/ 6
A,

Drafting dimensions can be created on the drawing or on a model view before the
view is imported to a drawing. This lesson discusses Dimension and Drafting Aid
creation, starting with the Open API routines to read and set the Drafting application
preferences. The description for the drafting parameter arrays is not included in this
text. It is available from the Open API Reference documentation in the Drafting
section.

OBJECTIVES Upon completion of this lesson, you will be able to:

e Read and set the drafting preferences.

e Create linear dimensions on a model or drawing
view.

e (Create notes and labels

e Control the WCS and create new coordinate
systems.

e Create, retrieve, and save views and layouts.

©EDS Open API 6-—-1
All Rights Reserved Student Guide

S
Y ”
76

Y,

Dimensioning

Dimension and Drafting routines

The following are a sample of the functions defined in uf_drf.h:

UF_DRF_ask_preferences
UF_DREF_set_preferences
UF_DRF_create_horizontal_dim
UF_DREF _init_object_structure
UF_DRF _create_vertical_dim
UF_DRF_create_note

UF_DREF _create_label
UF_VIEW_ask_tag of view_name
UF_VIEW_expand_view
UF_VIEW _is_expanded

UF_VIEW_unexpand_work_view

Open API ©EDS

Student Guide All Rights Reserved

Unigraphics NX 2

Dimensioning

calc_dimension.c

7
This routine controls the creation of dimensions for the objects from the three / 6 -
components. I simply calls a dimensioning routine for each of the three A,

components.

Most of the dimensions will be placed on the top half of the calculator. The
edges necessary for dimensioning are obtained in another routine.

Dimension locations are specified in the template files for dimension creation.

©EDS Open API 6-3
All Rights Reserved Student Guide

Dimensioning

Code Discussion: calc_dimension_top.c

/////

6 /* Read the current settings for drafting/dimensioning */
/ flag = UF_CALL(UF_DRF ask preferences (mpi,mpr,radsym,diasym)) ;
s

UF _DRF ask_preferences reads all of the creation parameters for dimensions
and drafting aids and loads them into local variables. mpi is an integer array
dimensioned to 100, mpr is a double precision array dimensioned to 70, and
radsym and diasym are arrays of six characters each that hold the radius and
diameter symbol strings.

/* Set the linear units to mm and change the character size and number
* of decimal places.
* Call the routine that reset draft/dim settings.

*
/
mpi[3] = 2; /* decimal places */
mpi[13] = 1; /* linear units */
mpr [32] = 5.0; /* character height */
flag = UF_CALL(UF_DRF set preferences (mpi,mpr,radsym,diasym)) ;

UF_DRF set_preferences writes drafting creation parameters back to the data
model. This body of code changes decimal places to two, linear units to
millimeters, and character height to five millimeters for all dimensions and
drafting entities that are going to be created.

/* Initialize structures. This sets the associativity modifiers
* to UF DRF end point (which is what we want. Check return codes!
* Also initialize the text structure.

*
/
flag = UF_CALL(UF_DRF init object structure(&dimO));
if(flag) return(1);
flag = UF_CALL(UF_DRF init object structure(&diml));
if(flag) return(1);
dim text.lines app text = 0;
dim text.user dim text = NULL;
dim text.appended text = NULL;

The structures used for the object information for the dimension are initialized.
An Open API function call is used for the object structure. The text structure
is initialized explicitly.

/* Get the edges for the dimensions. They are returned in a particular
* order documented in the comments at the routine start.
*/

flag = calc_dimension top edges (edge, epcode) ;

if (flag) return (flag);

calc_dimension_top_edges returns a list of edge objects and a list of endpoint
codes (either first point or last point) to be used for the dimensions on the
edges. The code will be examined later in this lesson.

Open API ©EDS . .
6—4 Student Guide All Rights Reserved Unigraphics NX 2

Dimensioning

/* Obtain the tag of the work view. It is used in the structures. */
flag = UF_CALL(UF_VIEW ask tag of view name(””, &view tag)); .
if (flag) return (flag); /////5
dim0.object view tag = diml.object view tag = view tag; / g

Y,

The dimension structure requires the tag of the view containing the object.
This is necessary when dimensioning on a drawing. The tag of the object being
dimensioned exists in model space. When dimensioning on a drawing, the tag
of the member view is needed so Unigraphics can map from model space to
drawing space. We are applying our dimensions in the model view. The tag of
the work view is loaded in the structure to indicate that no mapping is
necessary.

/* First dim. is from left edge to right. Set the location. */

origin[0] = 0.5 * width;
origin([l] = height + 6.0*mpr[32];
origin[2] = 5.0;

The location of the dimension is determined from the calculator width and
dimension text size. mpr[32] is the dimension text size. The origin assignments
set this dimension midway between the left and right edges of the part (X), at
six times the character height above the part (Y), and on the bottom face of the
top half of the calculator (Z).

/* Set the structure data for both object tags and assoc. modifiers.
* Create the dimension.
*/

dimO.object assoc modifier = epcodel0];

dim0.object tag = edgel0];

diml.object assoc modifier = epcodell];

diml.object tag = edgel[l];

flag = UF_CALL(UF_DRF create horizontal dim(&dim0O, &diml,

&dim text, origin, &dimension));

This body of code creates the first of our dimensions. The dimension structure
objects are set. The modifiers that indicate which end to use for the extension
line are also set.

©EDS Open API 6-5
All Rights Reserved Student Guide

Dimensioning

Code Discussion: calc_dimension_top_edges.c

'//////
v / calc_dimension_top_edges finds which edges are to be dimensioned and returns
7./ them sequentially with a flag to indicate which end of the edge to use. The

completed function is provided.

/* Evaluate expressions for calculator */
flag = UF _CALL(UF_MODL_eval exp(“Body height”, &height));
if (flag) return(flag);

The edges to be dimensioned will be found by their properties of length and
location. The lengths and locations are found by evaluating the expressions.

/* Locate the target body using it’s name; TOP_HALF */
body = NULL TAG;
flag = UF_CALL(UF_OBJ cycle by name (”TOP_HALF”, &body));

UF_OBJ cycle_by name, when used as above, finds the first object with the
specified name. The function is normally called in a loop but we know there is
one body called “TOP_HALF” in the part.

TIP I1t's agood idea to namethe solidsyou create. Thisis easy to do when apro-
gram is doing the work of applying the system $NAME attribute. You never
know when the nameswill come in handy. They may be used for finding solids
or later in creating reports.

/* Obtain the edges and count of edges in the body. */
flag = UF_CALL(UF_MODL ask body edges (body, &elist));
if (flag) return(flag) ;

flag = UF_CALL(UF_MODL ask list count (elist, &ecount));
if (flag) return(flag);

/* Loop through the edges and find the vertices. Check for specific
* edges and store those particular edges and the appropriate end
* point code. UF DRF first end point if the first vertex is the
* desired endpoint; UF DRF last end point for the second vertex.

*/
for(i = 0; i < ecount; i++) {
flag = UF_CALL(UF_MODL ask list item(elist,i, &edge tag));
if (flag) return(flag);
flag = UF _CALL(UF_MODL ask edge verts(edge tag,ptl,pt2, &vcount)
)
if (flag) return(flag);
Open API ©EDS . .
606 Student Guide All Rights Reserved Unigraphics NX 2

Dimensioning

/* Check for vertical edges. */
if ((fabs (pt1[0] - pt2[0]) < 0.001)) {

/7

/ /
76 7
/* Look for left vertical edge at the back */ /
if ((fabs (pt1[0]) < 0.001) && (fabs(ptl[2] - 5.0) < 0.001)) { Y,
edge [0] = edge tag;
if (pt1[1] > pt2[1])

epcode [0] = UF DRF first end point;
else

epcode [0] = UF DRF last end point;
continue;

A list of edges is obtained and the routine cycles the list looking for edges that
match certain qualifications. When an edge is found, it is added to the edge
array returned through the argument list. The startpoint/endpoint code is set
for the edge. It, too, is returned through the argument list.

All the vertical edges are stored in the list first, followed by the horizontal
edges. As always, when checking two floating point numbers for equivalence,
do not check them against one another but check the absolute value of their
difference against some tolerance.

As Open API application programmers, you will have to understand assemblies
at a deeper level than an external user. Here is an example where the
difference between prototypes and occurrences is critical.

/* The edges procured are the prototype (objects in the child). Find
* the occurrence tags of these objects so the dimensions will be made
* to objects in the assembly.

*
/
for(i=0; i < 14; i++) {
UF_ASSEM ask occs of entity(edgel[il, &occs) ;
edge[i] = ocecs[0];
UF_free (occs) ;

When a component is brought into an assembly, the geometry in the child part
is prototype geometry. The geometry in the component (in the assembly) are
object occurrences.

©EDS Open API 6-7
All Rights Reserved Student Guide

Dimensioning

When the routine UF_OBJ cycle_by name was used
'//////

/
/ 6 / flag = UF_CALL(UF_OBJ cycle by name (”TOP_HALF”, &body));

Y,

to get the body of the top half, the work part was the assembly, so it returned
the identifier of the object occurrence of the body in the assembly.

When the occurrence of the body was used to get the list of edges with
flag = UF_CALL(UF_MODL ask body edges (body, &elist));
Unigraphics returned the identifiers of the prototypes of the edges.

To get the occurrence of the object, we used

UF_ASSEM ask occs of entity(edgelil, &occs) ;

for each prototype edge to get the associated object occurrence in the assembly.
Remember, the dimensions are being created in the assembly.

Open API ©EDS . .
6-38 Student Guide All Rights Reserved Unigraphics NX 2

Dimensioning

calc_dimension_bottom.c

7
There are no dimensions for the bottom half of the calculator. The / 6 -
calc_dimension_bottom function currently returns with no actions. Y,

©EDS Open API 6-9
All Rights Reserved Student Guide

Dimensioning

Activity: Create Top Dimensions
S
76/
7 / Step 1 Copy the files calc_dimension, calc_dimension_top,
& calc_dimension_bottom, and calc_dimension_top_edges to

your sub—directory.

Step 2 Add the necessary Open API function calls to
calc_dimension_top.

Step 3 Add the prototypes to calcproto.h.

Step 4 Change the calculator routine to call the calc_dimension
routine.

Step 5 Edit Makefile and add calc_dimension.o,
calc_dimension_top.o, calc_dimension_top_edges.o, and
calc_dimension_bottom.o to the SUBOBJS list and make a
new executable. You should see dimensions on the
calculator in the TOP view.

Remember, do NOT save your part files!

Open API ©EDS . .
6—-10 Student Guide All Rights Reserved Unigraphics NX 2

Dimensioning

The previous activity will generate the dimensions in the TOP view of the
assembly. It will look similar to the following. v/

/
7 6 7

Y,

140.00

Figure 6—1 Calculator Top dimensions

These are the default dimensions. If you vary the dialog input, your dimensions
will be different.

©EDS Open API —
All Rights Reserved Student Guide 6—-11

Dimensioning

WCS control routines

S
76 4 The following routines allow control of the WCS. Prototypes are in uf csys.h.

/
Y
e UF_CSYS_create_matrix

o UF_CSYS_create_csys

e UF_CSYS_create_temp_csys
e UF_CSYS_set_wcs

e UF_CSYS_ask wcs

e UF_CSYS_map_point

Open API ©EDS . .
6—12 Student Guide All Rights Reserved Unigraphics NX 2

Dimensioning

View/Layout control routines

S

The following routines manipulate views and layouts. Prototypes are in 76 7
uf layout.h or uf view.h. 7/

e uc6464 Replace View in Layout

e uc6449 Change Work View

e uc6466 Read Current Layout Name and Work View Name

o uc6468 Retrieve Layout

e uc6430 Read View Center and Scale

e uc6431 Set View Center and Scale

o uc6432 Fit the View(s)

UF_VIEW_fit_view

uc6433
uc6434
uc6442
uc6443

Read View Matrix
Set View Matrix
Read View Drawing Parameters

Set View Drawing Parameters

UF_VIEW _ask_work_view

UF_VIEW _save_all_active_views

uc6450
uc6454

Save View

Delete View

UF_VIEW_delete

UF_VIEW _cycle_objects

©EDS Open API —
All Rights Reserved Student Guide 6-13

S
Y ”
76

Y,

Dimensioning

Code Discussion: calc_dimension_button.c

The routine ug_set wcs_to_view changes the WCS pointer (makes the WCS
point to a different csys object). The csys objects created to allow dimension
creation in the RIGHT and FRONT views should be deleted at the end of the

routine.

/* Set the work view (and WCS) to create a dimension in the FRONT
* view. Save the original WCS.
*
/
UF_CALL(UF_CSYS ask wcs(&csysl));
uce4ed (", " "FRONT”) ;
flag = ug_set wcs_to view (”FRONT”) ;
if (flag) return(flag);

The point of this body of code is to set the view and the Work Coordinate
System (WCS) for the dimensions that are going to be created. The dimensions
are placed in the XC—YC plane or work plane of the WCS. The WCS must be
oriented to the view coordinate system to have the dimensions created in the
proper orientation to the view.

UF_CSYS _ask_wcs returns the tag to the current WCS. This is saved so the
WCS can be restored when the dimensioning is done. The intermediate WCS
display artifacts created are temporary and will disappear when the screen is
refreshed.

uc6464 replaces a view in a layout. The null strings for the first two arguments
indicate that the current layout work view is to be replaced. The third
argument is the name of the view to put into the layout.

Open API ©EDS . .
Student Guide All Rights Reserved Unigraphics NX 2

Dimensioning

ug_set_wcs_to_view.c

7
ug set wes_to_view sets the WCS to the view passed through the argument list. / 6 -
The routine changes the WCS pointer to a coordinate system (csys) created Y,

from the view matrix.

calc_dimension_button_edges.c

The completed routine to obtain edges for dimensioning the button is provided.
The routine uses Open API function calls that have been discussed. It locates
edges of the button and returns them in a particular order.

©EDS Open API —
All Rights Reserved Student Guide 615

Dimensioning

Activity: Create Button Dimensions
S
76/
7 / Step 1 Copy the routines calc_dimension_button,
& calc_dimension_button_edges, and ug_set_wcs_to_view to

your sub—directory.

Step 2 Add the appropriate Open API function calls to
calc_dimension_button and ug_set_wcs_to_view.

Step 3 Uncomment the call to calc_dimension_button in the
calc_dimension routine.

Step 4 Update calcproto.h and add prototypes for the three new
routines.

Step 5 Edit Makefile and add calc_dimension_button.o,
ug_set_wces_to_view.o and calc_dimension_button_edges.o to
the SUBOBJS list and make a new executable.

Step 6 Run the program.

Step 7 Change views (or open a four view layout) to see the
dimensions on the FRONT and RIGHT views.

NOTE If you used the provided solutions, you will have to open
L4_DREF. This example is for many companies who desire
that annotations not be placed on modeling views. The
solutions contain extra steps to create three drafting
views: TOP_DREF in calc_dimension_top, FRONT_DRF
and RIGHT DREF in calc_dimension_button. Layout
L4 DREF is created in calc_dimension_button by uc6460
and the L1 layout is retrieved by uc6468.

Remember, do NOT save your part files!

Open API ©EDS . .
6-16 Student Guide All Rights Reserved Unigraphics NX 2

Dimensioning

SUMMARY

/S
Y ”
7 6 7

Y,

You created dimensions on an assembly in
three different model views. You controlled
the WCS and layout to perform these activities.

In this lesson, you :

Changed preferences for drafting object
creation.

Created horizontal and vertical
dimensions.

Replaced views in a layout.
Created temporary coordinate systems.

Changed the WCS orientation.

©EDS Open API 6-—-17
All Rights Reserved Student Guide

Dimensioning

S
/ /
/ 6
2
(This Page Intentionally Left Blank)
618 Studgrﬁeg}ﬁgg All Rigl%f ggserved Unigraphics NX 2

Drawings

Drawings
Lesson 7

The drawing lesson will introduce you to the creation and modification of drawings.
The process of adding views to the drawing, changing drawing member view
characteristics and updating drawings is also covered.

:////,

OBJECTIVES Upon completion of this lesson, you will be able to: ;////
7/

e Create a metric or english standard size drawing.
e Import model views to the drawing.

e Retrieve (import) a part as a drawing border.

e Cycle the member views of the drawing.

e Update views on the drawing.

e Cycle various object classes on a drawing.

Member View and Drawing Name Conventions

After the model is complete, the next step is to create a drawing. The
dimensions for the class project were added to the model views and will be

imported when the views are put onto the drawing. A drawing border will also
be included.

In the Open API, drawing member view names need an “@” character to
denote it as a drawing member view. Specifying the view name this way is
actually a short cut since the actual view name contains an integer following the
“@?” character. Optionally, you may enter the full name in order to assure
uniqueness of member view names. Drawings can have more than one instance
of a given view on a single drawing in Unigraphics.

An example of a drawing member view name that is derived from the model
view, TOP, would be “TOP@3”. To specify the name of the model view, “TOP”
should be given. To specify the name of the drawing member view, either
“TOP@” or “TOP@3” can be given. The full names of all the member views
for a given drawing can be retrieved using uf6499.

©EDS Open API 7-1
All Rights Reserved Student Guide

:////,

/

/ 4
Y,

Drawings

Additionally, drawings have an associated drawing work view whose name is the
drawing name with “@0” appended to it.

Functions that create, retrieve, or require the presence of a drawing will only be
allowed in the Drafting module when running interactive Open API programs.

NOTE In Unigraphics, when the drawing view is the work view,
the layout which contains the drawing is called
'DRAWING. This layout name is read only and cannot
be used to set the current layout.

NOTE In routines that specify open and closed quotes = current
drawing, view name, etc., there are no spaces between the
quotes (“7).

Open API ©EDS . .
Student Guide All Rights Reserved Unigraphics NX 2

Drawings

Drawing routines

The following routines relate to creating and working on Drawings and

Member Views.

uc6476 Set Drawing State
uc6477 Retrieve Drawing State
uc6478 Create Drawing
uc6479 Read Drawing Size
uc6480 Set Drawing Size
UF_DRAW_ask_drawing_info
UF_DRAW_set_drawing_info
UF_DRAW_import_view

uc6481 Add View to Drawing

uc6482 Remove View from Drawing

uc6483 Read View Reference Point on Drawing
uc6484 Set View Reference Point on Drawing
uc6485 Read View Borders on Current Drawing
uc6486 Set View Borders on Current Drawing

UF_DRAW_define_view_manual_rect
UF_DRAW_update_one_view

uc6492 Read Current Drawing Name
UF_DRAW_ask_current_drawing

uc6496 Rename Drawing

uc6495 Delete Drawing

uc6499 Cycle Views in Drawing

©EDS Open API
All Rights Reserved Student Guide

7
;7
Y,

:////,

/

/ 4
Y,

Drawings

Importing Parts
UF_PART _import

Drawing borders can be created in a part file drawing, imported from a drawing
border template file, or called in as a pattern. The part import method will pull
in a copy of the part file onto the drawing (or into the model, depending on the
mode selected). Updates to the drawing border file will not be reflected in files
that have already imported the border part. Drawing borders must be imported
when the drawing is the work view and the view import mode (in the
part_modes structure) is set to not import views.

The pattern method allows you to have a single source for part file drawing
borders. Changes to that part’s pattern data will be reflected in drawings using
that pattern as a border. The pattern related Open API functions will not be
discussed here.

Code Discussion: calc_drawing.c

/* Set up identity matrix for part import. */
amat [0] = 1.0; amat[1l] = 0.0; amat[2] = 0.0;
amat [3] = 0.0; amat[4] = 1.0; amat[5] = 0.0;
aorg[0] = 0.0; aorg[l] = 0.0; aorgl[2] = 0.0;

The import routine uses a matrix to position the object(s) being imported. This
sets up an identity matrix (no rotation) and an origin of 0,0,0 (no translation).

/* Get the name of the current layout. */
uc6466 (curlay, curview) ;

uc6466 gets the name of the current layout and current work view. In case
something goes wrong, we’ll want to restore the layout.

/* Create a drawing using the input argument name. Check return
* code. Restore the old layout and return if an error occurs.
*

/
flag = uc6478 (dname, two,dsize,htwd) ;
if(flag != 0) {
uc6468 (curlay, one, rdum) ;
return (flag);

}

uc6478 creates a drawing and replaces the current layout with it. As the second
argument is “two”, the drawing will be in millimeters. Because the drawing size
is one of the standard sizes (A2), the fourth argument (htwd) is not used.

Open API ©EDS . .
Student Guide All Rights Reserved Unigraphics NX 2

Drawings

/* Initialize the structure for part import. */

pmod.layer mode = IP_WORK;
pmod.group mode = IP NOGROUP;
pmod.plist mode = IP_NONE;

pmod.view mode = IP NO VIEW;
pmod.cam mode = FALSE;

The import part characteristics are set here. The structure members are set to:

e Import data onto the work layer

e Do not import the object(s) as a group

e Do not import part list data :// 7 /;
/ /
e Do not import views /Y

The option for views is important when importing data onto a drawing. If this
option was set to IP_VIEW, the data from the part file would be imported into
the model. The IP_NO_VIEW setting will cause view dependent data to be
created if the current work view is a drawing.

/* Retrieve (import) title block part. Check the return code.
* Restore the old layout and return if an error occurs.
*
/
strcpy (pfile,”./dwg-a2border.prt”) ;
flag = UF_CALL(UF_PART import(pfile, &pmod, amat, aorg, ascale,
&grp))i
if (flag !'= 0) {
uc6468 (curlay, one, rdum) ;
return (flag);

The part file that is imported may require a full or relative path name if the file
is not in the directory where UG was executed. If the import fails, the old
model view will be restored. The drawing will still exist: it will be empty.

/* Place the views onto the drawing. */
flag = calc_drawing views (dname,dsize) ;
return (flag);

The views will be added to the drawing in locations based on the drawing size.
The calc_drawing views routine will place the TOP, FRONT, RIGHT and
TFR—ISO view on the drawing.

©EDS Open API 7-5
All Rights Reserved Student Guide

Drawings

/* Obtain the drawing tag. Could also use UF DRAW ask current drawing */
curview[0] = "\0';
drawing tag = NULL_TAG;
UF_OBJ cycle by name(dname, &drawing tag);

/* Cycle through the views and update each view. */

while(TRUE) ({
tag t view tag;

/* Get the member view from the current drawing. */

uc6499(""", curview);
if('\0’ == curview[0])
break;
, /* Get the tag of that view and update the view on the drawing */
/?664 UF_CALL (UF_VIEW ask tag of view name(curview, &view tag));
/ 4 UF_CALL (UF_DRAW update one view(drawing tag, view tag));

/ / };
77 '

The views will not be up—to—date on the drawing. We must cycle through all
member views and update the views. The view and drawing tags are required.
The UF_OBJ _cycle_by name routine obtains the tag of the drawing. The

UF _VIEW ask_tag of view_name will return the member view tags. Views
currently must be updated one at a time.

Code Discussion: calc_drawing_views.c

/* Evaluate the expressions for calculator height and width. Check
* return codes.
*/

flag = UF _CALL(UF_MODL_eval exp(“Body height”, &height));

if (flag) return(flag);

We will need the calculator dimensions in order to set up the view centers and
to place the views on the drawing.

Open API ©EDS . .
7-6 Student Guide All Rights Reserved Unigraphics NX 2

Drawings

/* Calculate spacing between views */
hspace = (htwd[dsize-1][1] - width - height) /3.0;
vespace = (htwd[dsize-1][0] - height - 12.0)/3.0;

These calculations are designed so that the space between the views is equal to
the space between a view and the nearest border. Note that the drawing height
(Y) is the first position in the array and width (X) is the second position. The
horizontal space is one-third of the entire drawing width minus the calculator
width (which is the horizontal display in the FRONT view) minus the calculator
height (which is the horizontal in the RIGHT view). The vertical space is
one-third of the drawing width minus the calculator height (vertical in the TOP

view) minus 12.0 (vertical in the FRONT view). 77
/

/ /

/ /

The “12.0” is the depth of the calculator. There are ten millimeters for the 7/

calculator body and the buttons extend two millimeters beyond the body.

/* Set the View center and view’s drawing ref. for the FRONT view. */

center [0] = 0.5*width;
center[1l] = 0.5*height;
center[2] = 6.0;

flag = uc6431("FRONT”, center, 1.0);
if(flag) return(flag);
flag = uc6443 ("FRONT”, center, 0.0);
if(flag) return(flag);

The geometry was set up so that all measures and expressions dealt with
positive values. In order for the views to line up correctly on the drawing, the
view centers must be set to the center of the geometry. The view’s reference
point for placement on the drawing must also be set.

/* Import (add) the FRONT view to the drawing. Set refpt (the drawing
* reference point) to position view on drawing. Check return code.

*/

refpt [0] = hspace + width/2.0;
refpt[1] = vspace + 6.0;
flag = uc6481 (dname, “FRONT” ,refpt, 1) ;

if(flag) return(flag);

Here is where the first view, the FRONT view is placed on the drawing. The
refpt drawing location is where the view’s drawing reference will be placed.
Similar code will set the import location on the drawing (refpt) and add the
view to the drawing (transferring view dependent geometry such as dimensions
to the drawing/member view).

©EDS Open API 7=7
All Rights Reserved Student Guide

Drawings

Activity: Create a Drawing

Step 1 Copy the template files calc_drawing views.c and
calc_drawing.c to your sub— directory.

Step 2 Edit the routines and add the appropriate Open API
function calls.

Step 3 Add a call to calc_drawing in the calculator program. You
must strcpy a drawing name into the dname variable.

v
/ 7 4
/ /
77 Step 4 Add the prototype for calc_drawing and
calc_drawing_views in the calcproto.h file.

Step 5 Edit Makefile and add calc_drawing _views.o and
calc_drawing.o to the SUBOBJS list and make a new
executable. The drawing should appear as follows:

——72.50—

l—62.50 5.00
— —5.00 ° 8.00
L 18007

T H

| [oo
]

7'63_1 4.754

¥
[Iﬂ:—lD.QZ
4.75

10.42—|--| 7.13—-| |-—

Figure 7—1 Calculator Drawing *without border)

Open API ©EDS . .
7-8 Student Guide All Rights Reserved Unigraphics NX 2

Drawings

SUMMARY

You created a drawing using model views that
contained dimensions. You also imported a

drawing border. i/
;7
In this lesson, you : /Y

e Created a metric A2 sized drawing.

e Imported the model views at specific
locations.

e Cycled the drawing member views and
updated the out—of—date views.

e Imported drawing borders.

©EDS Open API 7-9
All Rights Reserved Student Guide

Drawings

/e

/
5
27
(This Page Intentionally Left Blank)
7-10 Studgrﬁeg}ﬁgg All Rigl%f ggserved Unigraphics NX 2

External Open API

External Open API

Lesson 8

External Open API application programs allow you to execute a program
without the graphics window display. There is little difference between internal
and external programs. Part and object attributes are important for storing and
retrieving information in the data model.

OBJECTIVES Upon completion of this lesson, you will be able to:

Create an external Open API application program.

Generate attributes on parts and objects.

e Find and read attribute information. 7////
e Identify some of the CFI (Common File Interface) 78
functions. S

©EDS Open API 8§—1
All Rights Reserved Student Guide

External Open API

External Open API Programs

An external Open API application program is a program that does not use
Unigraphics to display a part file or dialogs. There is no user interaction unless
it is done with printf/scanf or through a Motif dialog .

e The User Interface Styler is for internal programs only.

e A link flag (“—e” using ufmenu, “make —ext” using the makefile) is
the only procedural difference in compiling and linking external
programs.

e External programs start with main (argc, argv) rather than ufusr (
param, flag, plen).

e An external program ends with exit () rather than return().

Some of the uses for an external program are:

e Checking parts to see if they follow standards and then either
correcting or reporting problems.
7,
,/ g//j ¢ File management operations such as moving files from development to

/ / release directories.
VS

e Reading attributes and writing reports.

Our external program opens the calculator part created by the programming in
this course and writes a simple report based upon assigned attributes. In order
to use this program, we will have to add attributes to the parts and save the
parts created by the internal Open API application program. One way to do
this is to select File-Save All and Exit after the calculator internal Open API
application is run. This will allow us to finally have completed and saved part
files at this point.

Open API ©EDS . .
8-2 Student Guide All Rights Reserved Unigraphics NX 2

External Open API

Attribute Routines

The following data structures are used by the UF_ATTR C routines. The full
structure is defined in uf_attr.h. Field descriptions re found in the
documentation under Types.

e UF_ATTR part_attr_s
e UF_ATTR value_s
e UF_ATTR value_u

The following is a list of functions to set, modify, or access attributes:
e UF_ATTR ask_part_attribute
e UF_ATTR_assign
e UF_ATTR_ask_part_attrs
e UF_ATTR_ask_part_attrs_in_file
e UF_ATTR_read_value
e UF_ATTR_cycle

v
e UF_ATTR_delete / 8 -

/
e UF_ATTR_delete_all /224

Adding Attributes to the Calculator Parts

Attributes can be added to parts and objects at any time. Internal and external
Open API programs can create, access and delete attributes. A section of code
in our routines was omitted until the modeling functions were completed.
These sections added attributes to the parts. The following code adds a part
attribute to the top part.

char svalue[50]

UF_ATTR value t att value; /* attribute data structure */
Declare a variable as the structure for attribute assignment.

Add part number and description attributes to the part. Use

UF_ATTR ask_part_attribute to obtain the part id for attribute assignment. Use
UF _ATTR assign to add the attribute. Use the titles PARTNUMBER and
DESCRIPTN.

©EDS Open API 8§-3
All Rights Reserved Student Guide

2
/

/ /

YIS

External Open API

UF_CALL(UF_ATTR ask part attribute(&atteid));

att value.type = UF_ATTR string;

strcpy (svalue,”001”) ; /* First call is the part number. */
att value.value.string = svalue;

UF_CALL(UF_ATTR assign(atteid, ”PARTNUMBER”, att value));

strcpy (svalue, "TOP”) ; /* Second call for description. */
UF_CALL(UF_ATTR assign(atteid, “DESCRIPTN”, att value));

Assign attributes. Please note that att_value.value.string IS a pointer
variable. It is not an allocated character array. When you want to assign a
string—valued attribute, you set up the string by assigning
att_value.value.string tO a character array. svalue is our character array.
The string can be up to 132 characters (not including the NULL character).

The assignment of att value.value.string tO svalue needs to be done only
once. Once the part number attribute has been assigned, it takes less code to
assign the description attribute.

att value IS our attribute data structure. Please note that it is declared with the
typedef ur_ATTR value t not with ur_ATTR value p t.

Because we are using one part per solid body, it makes sense to assign
attributes to the part. UF ATTR ask part_attribute(satteid) gets the tag of the
part attribute entity.

TIP Only strings can be assigned to the part attribute. Integer and other types of
attributes can be assigned to geometric objects.

The code segment discussed can be used to assign part attributes to all three
parts by changing the svalue string to the appropriate value in the bottom and
button part creation routines.

calcx.c

The external Open API program is written as a single code mainline segment.
It can be compiled with the same switches as an internal Open API program. It
does not harm anything for this to be compiled as position independent. The
link phase for external Open API programs will require specifying e’ for
external rather than the default of ‘i* for internal.

Open API ©EDS . .
Student Guide All Rights Reserved Unigraphics NX 2

External Open API

Code Discussion: calcx.c

/* Check for correct number of input arguments */
if (arge !'= 3) {
strcpy (msg, "This program takes two arguments: ”);
strcat (msg, “the root part file name and the name\n”);
strcat (msg, "of the output text file.”);
printf ("%$s\n”,msqg) ;
exit (1) ;

—~ o~ o~ —~

}

The program assumes two arguments. argv[0] is the program name (occurs for
all C programs), the first argument argv[1] is the part file name, and argv[2] is
the output text file. This code protects the program from an improper
argument count.

/* Check out a Open API license */
flag = UF CALL(UF_initialize());
if (flag) exit(2);

External Open API application programs must get a license for Open API
function calls to be made.

/* Open the part. It should be argv[l]. Store its tag as top part. */
strcpy (fspec, argvI[l]);
flag = UF_CALL(UF_PART open(fspec, &top part, &estat));
if (flag) exit (3);

Open the part name from the calling arguments. It should be the name of your
calculator part. Copy the calling argument into a local variable (fspec) that is
large enough for the maximum file specification length.

/* Call the routine to set the view to a model view (if a drawing is
* disgplayed). It has no effect if a model view is active.
*/

UF_DRAW set display state(1l);

As part of this program, we are going to be changing the work part. This code
sets the drawing display state off. As with interactive Unigraphics, you cannot
change the work part in an assembly if the drawing is displayed.

UF_DRAW _set_display_state will insure that a model view is ‘active’.

/* Open the text file (use fid for file identifier). */
fid = uc4504 (argv([2],3,0);
if (£id < 0) {
UF_get fail message (flag,msg) ;
printf (”$s\n”,msqg) ;
exit (4);

/* Write a header "Report for calculator” to the file id. */
uc4524 (fid, "Report for Calculator”);
uc4524 (fid, " ——————— e "y ;

©EDS Open API 8§-5
All Rights Reserved Student Guide

External Open API

Create a text file for writing. argv[2] is the second argument to the program
and is the name of the file to create. The 3 tells uc4504 to delete any existing
copy of the text file. The third argument to uc4504 is the file type. Unigraphics
uses this to check for the suffix on the file name. For instance, if you were
working with parts, you would specify a file type of 2. Unigraphics would use
this to make sure that a “.prt” is included in the file name.

Here, we are using a file type of 0 which tells uc4504 not to worry about the
suffix. We will rely on the user to know the name of the file.

/* Set the attribute char pointer to point to the svalue character string
array. Initialize the savename to a NULL string. */
att value.value.string = svalue;
strcpy (savename,””) ;

The structure member att_value.value.string is a pointer variable. Memory
must be allocated or it must be set to point to an existing character array.

The savename variable will be used to keep the program from reporting on
every instance of the button. Only the first instance will be reported.

/* Loop through all the component instances. For each unique instance,
* obtain the attribute information and write it to the file.
*/

inst = NULL TAG;

while (TRUE) {

/* Set inst to the next instance under the top part using the assem
* routine to cycle instances. Get the part names of the instances.
*

/
inst = UF_ASSEM cycle inst of part(top part,inst);
if (NULL TAG == inst)
break;
UF_ASSEM ask part name of child(inst, fspec) ;

/* Split the file spec into the directory and part name strings. Remove
* the ’'.prt’ from the part file string and save the result in pname.
*/

uc4576 (fspec, 2,dspec, cname) ;
uc4578 (cname, 2, pname) ;

/* Check if pname is the same as the previous name. Skip it if it is (the
* buttons will have the same name and should only be done once.
*/
if (strcmp (savename, pname) == 0) {
continue;
}

printf ("Working on %s\n”,pname) ;

Open API ©EDS . .
Student Guide All Rights Reserved Unigraphics NX 2

External Open API

Cycle through the instances inside the calculator part. For each instance, get its
name and if the name is not already in savename, get the child part of the
instance and make it the work part.

UF _ASSEM ask part name_of child returns the full filespec of the part.
uc4576 splits a filespec into the directory path and the file name. The file type
(2) is used to insure the name has the “.prt” suffix. uc4578 strips the suffix from
a file name.

/* Write a blank line and then the file name. */
uc4524 (£id,” ") ;
uc4524 (fid, pname) ;

/* Set child to the child part tag of the instance and change
* the work part to the child so we can get the part attribute.
* Check return code.
*/
child = UF_ASSEM ask child of instance(inst);
flag = UF_CALL(UF_ASSEM set work part(child));
if (flag) exit (5);

/* Get the part attribute ID and read the PARTNUMBER and DESCRIPTN
* attribute wvalues.

*
/
UF CALL(UF ATTR ask part attribute (gatteid)); v
UF_CALL(UF_ATTR read value (atteid,” PARTNUMBER” ,UF ATTR string, / 8 /
&att value)); y f
sprintf (msg,” Part Number = %s”,svalue) ; 966‘(

uc4524 (fid, msqg) ;

UF_ATTR read value (atteid,”DESCRIPTN” ,UF ATTR string,
&att value) ;

sprintf (msg,” Description = %s”,svalue) ;

uc4524 (fid, msqg) ;

Then get the part attribute entity and read the attributes. Build a string,
printf (msg,“ Part Number = %s”,svalue), With three spaces, the attribute
title, and the attribute value. Write the string to the text file (uc4524).

/* Copy the name of the part we just did to the save string */
strcpy (savename, pname) ;
}i

Put the name of the part into savename to avoid doing the button parts multiple
times. This is the last statement in the while loop that cycles the instances

/* Close and print the file */
uc4540(f£id, 0) ;
sprintf (msg,”cat %s,argv[l]);
system (msg) ;

©EDS Open API 8§—-7
All Rights Reserved Student Guide

External Open API

The file is closed and saved to the file system. Then the file is displayed.

/* Release Open API license */
UF terminate() ;
exit (0) ;

Release the Open API license.

77
/

/

YIS

Open API ©EDS . .
8-8 Student Guide All Rights Reserved Unigraphics NX 2

External Open API

Activity: Attribute and External Open API

Step 1

Step 2

Step 3

NOTE

Step 4

Step 5

Step 6

NOTE

Add attributes to the top, bottom, and button parts. Edit
files calc_model_top.c, calc_model_bottom.c and
calc_model_button.c. Add the Open API function calls to
add part attributes to the part files at the comments
marked YYY.

Copy the template file calcx.c to your sub—directory.
Add the appropriate Open API calls.

On windows systems, change the system command cat to
the windows dos command type.

Create a make file for the external Open program. Use
the external variable names in the make file. You will not
have any SUBOBJS. Name the file ext_calc because you
already have a file called Makefile in your directory. Use
“make ext —f ext_calc” to create your executable.

Run the internal Open API application program
calculator. This time, you must save the calculator part
files, which now have number and description attributes.

Run the external Open API application program. To run
the program:

enter the program file name followed by:
the part file and

an arbitrary data file name.
E.g. calex calculator.prt calc_att.dat

On Windows systems, make sure that libufun.dll is in the
current path. This file is found in §UGII_ROOT_DIR.
Start, Programs, Unigraphics, Unigraphics Tools, UG
Command Prompt.

©EDS Open API 8§—-9
All Rights Reserved Student Guide

2
/ /
/ /

YIS

External Open API

SUMMARY You added part attributes to our calculator

model and saved your assembly. You then
created an external Open API application
program that opened the assembly, read the
attributes and generated a report.

In this lesson, you :

e Learned how to make an external Open
API application program.

e Learned how to create attributes on parts

777 and objects.

/
787 e Read attributes from part files.
YIS

e Used a program with CFI (Common File
Interface) calls.

Open API ©EDS . .
8-10 Student Guide All Rights Reserved Unigraphics NX 2

Plotting

Plotting
Appendix A ////

////

Plotting in the Open API

Another step in the calculator project is plotting the drawing. calc_plot is the
function that does this. It sets up the plotting options and uses the function
UF_PLOT_drawing.

Plot Routines

The routines to plot in the Open API can plot either a drawing or the current
display. These routines are available in both internal and external Open API.

e UF_PLOT_display
e UF_PLOT_drawing

Code Discussion: calc_plot.c

UF_PLOT options t plot options;

UF_PLOT _options_t is a typedef for the structure shown earlier. It creates the
structure that will be passed to the plot routine.

/* Set the plot options. The scale of .45 allows an A2 to plot on 8.5X11
* paper. The rotation will and offset will be zero. The origin is the
* lower left corner, 0,0,0.

*/
plot options.scale = 0.45;

To plot this A2 size drawing to an 8 1/2 x 11 inch sheet, use a scale of 0.45.

©EDS Open API A=1
All Rights Reserved Student Guide

Plotting

plot options.plotter = pltr;
, plot options.node = node;
59996 plot options.jobname = jobnm;
A’ lot opti Msg = ;
/ v plot options.pauseMsg = pause;
/ plot options.bannerMsg = banner;
7777 -

The character arrays are not allocated. Set the structure character pointer
variables equal to the variable names we declared as character arrays.

/* Call the plot drawing routine. Check return code. */
flag = UF_PLOT drawing (dname, &plot options, &jobid) ;
if (flag < 0) return(flag);

Call the plot routine with the drawing name argument passed to the routine.

- Open API ©EDS Unigraphics NX 2
A-2 Student Guide All Rights Reserved grap

Plotting

Activity: Generating Drawing Plots

Step 1

Step 2

Step 3

Step 4

Step 5

////

Copy the template file calc_plot.c to your sub—directory. ////

Add the Open API function calls to plot the drawing.
Make sure the destination plotter name is valid!

Add the call to calc_plot in the calculator program.
Add the prototype for calc_plot in the calcproto.h file.

Edit Makefile and add calc_plot.o to the SUBOBJS list and
make a new executable. When you run the program, you
should get a plot.

©EDS Open API A=3
All Rights Reserved Student Guide

Plotting

////

////

(This Page Intentionally Left Blank)

- o Gnide OEDS nigraphics NX 2
A—4 Student Guide All Rights Reserved Unigraphics

Glossary

Glossary

ABS — Absolute coordinate system.

Absolute Coordinate System — Coordinate system in which all geometry is located
from a fixed or absolute zero point.

active view — One of up to 49 views per layout in which you can directly work.

angle — In Unigraphics, an angle measured on the X-Y plane of a coordinate
system is positive if the direction that it is swept is counterclockwise as viewed from
the positive Z axis side of the X-Y plane. An angle swept in the opposite direction
is said to be negative.

arc — An incomplete circle; sometimes used interchangeably with the term “circle.”

ASCII — American Standard Code for Information Interchange. It is a set of 8-bit
binary numbers representing the alphabet, punctuation, numerals, and other
special symbols used in text representation and communications protocol.

aspect ratio — The ratio of length to height which represents the change in size of a
symbol from its original.

assembly — A collection of piece parts and sub-assemblies representing a product.
In Unigraphics, an assembly is a part file which contains components.

assembly part — A Unigraphics part file which is a user-defined, structured
combination of sub-assemblies, components and/or objects.

associativity — The ability to tie together (link) separate pieces of information to
aid in automating the design, drafting, and manufacture of parts in Unigraphics.

attributes — Pieces of information that can be associated with Unigraphics
geometry and parts such as assigning a name to an object.

block font — A Unigraphics character font which is the default font used for
creating text in drafting objects and dimensions.

body — Class of objects containing sheets and solids (see solid body and sheet body).

bottom-up modeling — Modeling technique where component parts are designed
and edited in isolation of their usage within some higher level assembly. All
assemblies using the component are automatically updated when opened to reflect
the geometric edits made at the piece part level.

Open API
©EDS p .
All Rights Reserved Student Guide GL-1

/e
* GL

I

/e
 GL

I

Glossary

boundary — A set of geometric objects that describes the containment of a part
from a vantage point.

CAD/CAM — Computer Aided Design/Computer Aided Manufacturing.

category, layer — A name assigned to a layer, or group of layers. A category, if
descriptive of the type of data found on the layers to which it is assigned, will assist
the user in identifying and managing data in a part file.

chaining — A method of selecting a sequence of curves which are joined
end-to-end.

circle — A complete and closed arc, sometimes used interchangeably with the term
“arc.”

component — A collection of objects, similar to a group, in an assembly part. A
component may be a sub-assembly consisting of other, lower level components.

component part — The part file or “master” pointed to by a component within an
assembly. The actual geometry is stored in the component part and referenced, not
copied, by the assembly. A separate Unigraphics part file that the system associates
with a component object in the assembly part.

cone direction — Defines the cone direction using the Vector Subfunction.
cone origin — Defines the base origin using the Point Subfunction.

half angle — The half vertex angle defines the angle formed by the axis of the cone
and its side.

constraints — Refer to the methods you can use to refine and limit your sketch.
The methods of constraining a sketch are geometric and dimensional.

construction points — Points used to create a spline. Construction points may be
used as poles (control vertices), defining points, or data points. See POLES,
DEFINING POINTS, and DATA POINTS.

control point — Represents a specific location on an existing object. A line has
three control points: both end points and the midpoint of the line. The control
point for a closed circle is its center, while the control points for an open arc are its
end and midpoints. A spline has a control point at each knot point. A control point
is a position on existing geometry. Any of the following points: 1. Existing Points 2.
Endpoints of conics 3. Endpoints and midpoints of open arcs 4. Center points of
circles 5. Midpoints and endpoints of lines 6. Endpoints of splines.

convert curve — A method of creating a b-curve in which curves (lines, arcs, conics
or splines) may be selected for conversion into a b-curve.

Open API

GL-2 Student Guide ©EDS Unigraphics NX 2

All Rights Reserved

Coordinate System — A system of axes used in specifying positions (CSYS).

counterclockwise — The right-hand rule determines the counter- clockwise
direction. If the thumb is aligned with the ZC axis and pointing in the positive
direction, counterclockwise is defined as the direction the fingers would move from
the positive XC axis to the positive YC axis.

current layout — The layout currently displayed on the screen. Layout data is kept
in an intermediate storage area until it is saved.

curve — A curve in Unigraphics is any line, arc, conic, spline or b-curve. A
geometric object; this may refer to a line, an arc, a conic, or a spline.

defaults — Assumed values when they are not specifically defined.
defining points — Spline construction points. Splines created using defining points
are forced to pass through the points. These points are guaranteed to be on the

spline.

degree-of-freedom arrows — Arrow-like indicators that show areas that require
more information to fully constrain a sketch.

design in context — The ability to directly edit component geometry as it is
displayed in the assembly. Geometry from other components can be selected to aid
in the modeling. Also referred to as edit in place.

dimensional constraint — This is a scalar value or expression which limits the
measure of some geometric object such as the length of a line, the radius of an arc,
or the distance between two points.

directory — A hierarchical file organization structure which contains a list of
filenames together with information for locating those files.

displayed part — The part currently displayed in the graphics window.
edit in place — See design in context.

emphasize work part — A color coding option which helps distinguish geometry in
the work part from geometry in other parts within the same assembly.

endpoint — An endpoint of a curve or an existing point.
expression — An arithmetic or conditional statement that has a value. Expressions
are used to control dimensions and the relationships between dimensions of a

model.

face — A region on the outside of a body enclosed by edges.

Glossary

Open API
©EDS p .
All Rights Reserved Student Guide GL-3

/e
* GL

I

/e
 GL

I

Glossary

feature — An all-encompassing term which refers to all solids, bodies, and
primitives.

file — A group or unit of logically related data which is labeled or “named” and
associated with a specified space. In Unigraphics, parts, and patterns are a few
types of files.

filtering — See object filtering.

font box — A rectangle or “box” composed of dashed line objects. The font box
defines the size, width and spacing of characters belonging to a particular font.

font, character — A set of characters designed at a certain size, width and spacing.
font, line — Various styles of lines and curves, such as solid, dashed, etc.
free form feature — A body of zero thickness. (see body and sheet body)

generator curve — A contiguous set of curves, either open or closed, that can be
swept or revolved to create a body.

geometric constraint — A relationship between one or more geometric objects that
forces a limitation. For example, two lines that are perpendicular or parallel
specifies a geometric constraint.

grid — A rectangular array of implied points used to accurately align locations
which are entered by using the “screen position” option.

guide curve — A set of contiguous curves that define a path for a sweep operation.

virtual intersection — Intersection formed by extending two line segments that do
not touch to the position that they cross. The line segments must be non-parallel
and coplanar.

inflection — A point on a spline where the curve changes from concave to convex,
OT Vice versa.

interactive step — An individual menu in a sequence of menus used in performing a
Unigraphics function.

isometric view (Tfr-ISO) — Isometric view orientation — one where equal distances
along the coordinate axes are also equal to the view plane. One of the axes is
vertical.

knot points — The defining points of a spline. Points along a B-spline, representing
the endpoints of each spline segment.

Open API

GL-4 Student Guide ©EDS Unigraphics NX 2

All Rights Reserved

layer — A layer is a partition of a part. Layers are analogous to the transparent
material used by conventional designers. For example, the user may create all
geometry on one layer, all text and dimensions on a second, and tool paths on a
third.

layout — A collection of viewports or window areas, in which views are displayed.
The standard layouts in Unigraphics include one, two, four or six viewports.

layouts — Standard layouts are available to the user. These include:
L1 — Single View,

L2 — Two Views,

L3 — Two Views,

L4 — Four Views,

L6 — Six Views.

Information window — The window used in listing operations, such as Info.

loaded part — Any part currently opened and in memory. Parts are loaded explicitly
using the File—Open option and implicitly when they are used in an assembly being
opened.

menu — A list of options from which the user makes a selection.

model space — The coordinate system of a newly created part. This is also referred
to as the “absolute coordinate system.” Any other coordinate system may be
thought of as a rotation and/or translation of the absolute coordinate system.

name, expression — — The name of an expression is the single variable on the left
hand side of the expression. All expression names must be unique in a part file.
Each expression can have only one name. See expression.

objects — All geometry within the Unigraphics environment.

offset face — A Unigraphics surface type created by projecting (offsetting) points
along all the normals of a selected surface at a specified distance to create a “true”
offset.

options — A number of various alternatives (functions, modes, parameters, etc.)
from among which the user can choose.

origin — The point X = 0, Y = 0, Z = 0 for any particular coordinate system.

parametric design — Concept used to define and control the relationships between
the features of a model. Concept where the features of the model are defined by
parameters.

part — A Unigraphics file containing a .prt extension. It may be a piece part
containing model geometry, a sub-assembly, or a top-level assembly.

Open API
©EDS .
All Rights Reserved Student Guide GL-5

Glossary

/e
* GL

I

/e
 GL

I

Glossary

part or model — A collection of Unigraphics objects which together may represent
some object or structure.

partially loaded part — A component part which, for performance reasons, has not
been fully loaded. Only those portions of the component part necessary to render
the higher level assembly are initially loaded (the reference set).

point set — A distribution of points on a curve between two bounding points on that
curve.

Point Subfunction Menu — A list of options (methods) by which positions can be
specified in Unigraphics.

read-only part — A part for which the user does not have write access privilege.

real time dynamics — Produces smooth pan, zoom, and rotation of a part, though
placing great demand on the CPU.

Refresh — A function which causes the system to refresh the display list on the
viewing screen. This removes temporary display items and fills in holes left by Blank
or Delete.

right-hand rule, conventional — The right-hand rule is used to determine the
orientation of a coordinate system. If the origin of the coordinate system is in the
palm of the right fist, with the back of the hand lying on a table, the outward
extension of the index finger corresponds to the positive Y axis, the upward
extension of the middle finger corresponds to the positive Z axis, and the outward
extension of the thumb corresponds to the positive X axis.

right-hand rule for rotation — The right-hand rule for rotation is used to associate
vectors with directions of rotation. When the thumb is extended and aligned with a
given vector, the curled fingers determine the associated direction of rotation.
Conversely, when the curled fingers are held so as to indicate a given direction of
rotation, the extended thumb determines the associated vector.

screen cursor (cursor) — A marker on the screen which the user moves around
using some position indicator device. Used for indicating positions, selecting
objects, etc. Takes the form of a full-screen cross.

sheet — A object consisting of one or more faces not enclosing a volume. A body of
zero-thickness. Also called sheet body.)

sketch — A collection of geometric objects that closely approximates the outline of
a particular design. You refine your sketch with dimensional and geometric
constraints until you achieve a precise representation of your design. The sketch
can then be extruded or revolved to obtain a 3D object or feature.

Open API

GL-6 Student Guide ©EDS Unigraphics NX 2

All Rights Reserved

Glossary

Sketch Coordinate System (SCS) — The SCS is a coordinate system which
corresponds to the plane of the sketch. When a sketch is created the WCS is
changed to the SCS of the new sketch.

solid body — An enclosed volume. A type of body (see Body).

spline — A smooth free-form curve.

stored layout — The last saved version of a layout.

stored view — The last saved version of a view.

string — A contiguous series of lines and/or arcs connected at their end points. v
* GL
sub-assembly — A part which both contains components and is itself used as a /)

component in higher-level assemblies.

surface — The underlying geometry used to define a face on a sheet body. A
surface is always a sheet but a sheet is not necessarily a surface (see sheet body).
The underlying geometry used to define the shape of a face on a sheet.

system — The Unigraphics System.

temporary part — An empty part which is optionally created for any component
parts which cannot be found in the process of opening an assembly.

top-down modeling — Modeling technique where component parts can be created
and edited while working at the assembly level. Geometric changes made at the
assembly level are automatically reflected in the individual component part when
saved.

trim — To shorten or extend a curve.

trimetric view (Tfr-Tri) — A viewing orientation which provides you with an
excellent view of the principal axes. In Unigraphics 11, the trimetric view has the
Z-axis vertical. The measure along the X-axis is 7/8 of the measure along Z, and the
measure along the Y-axis is 3/4 of the measure along Z.

Unigraphics — A computer based turnkey graphics system for computer-aided
design, drafting, and manufacturing, produced by UGS.

units — The unit of measure in which you may work when constructing in
Unigraphics. Upon log on, you may define the unit of measure as inches or
millimeters.

upgraded component — A component which was originally created pre-V10 but has
been opened in V10 and upgraded to remove the duplicate geometry.

Open API
©EDS .
All Rights Reserved Student Guide GL-7

/e
 GL

I

Glossary

version — A term which identifies the state of a part with respect to a series of
modifications that have been made to the part since its creation.

view — A particular display of the model. View parameters include view orientation
matrix; center; scale; X,Y and Z clipping bounds; perspective vector; drawing
reference point and scale. Eight standard views are available to the user: Top,
Front, Right, Left, Bottom, Back, Tfr-ISO (top-front-right isometric), and Tfr-Tri
(top-front-right trimetric).

view dependent edit — A mode in which the user can edit a part in the current work
view only.

view dependent modifications — Modifications to the display of geometry in a
particular view. These include erase from view and modify color, font and width.

view dependent geometry — Geometry created within a particular view. It will only
be displayed in that view.

WCS — Work Coordinate System.

WCS, work plane — The WCS (Work Coordinate System) is the coordinate system
singled out by the user for use in construction, verification, etc. The coordinates of
the WCS are called work coordinates and are denoted by XC, YC, ZC. The XC-YC
plane is called the work plane.

Work Coordinate System — See WCS.

work layer — The layer on which geometry is being constructed. You may create
objects on only one layer at a time.

work part — The part in which you create and edit geometry. The work part can be
your displayed part or any component part which is contained in your displayed
assembly part. When displaying a piece part, the work part is always the same as
the displayed part.

work view — The view in which work is being performed. When the creation mode
is view dependent, any construction and view dependent editing that is performed
will occur only in the current work view.

XC axis — X-axis of the work coordinate system.

YC axis — Y-axis of the work coordinate system.

ZC axis — Z-axis of the work coordinate system.

Open API , ,
— . ©EDS Unigraphics NX 2
GL-8 Student Guide Al Rights Reserved

Index

Index

A

ABS, GL-1

Absolute Coordinate System, GL—1
Active View, GL—1

Angle, GL-1

Arc, GL-1

ASCIIL, GL-1

Aspect Ratio, GL—1

Assemblies, GL—1

Associativity, GL—1

Attribute, GL—1

Body, GL-1
Bottom—Up Modeling, GL—1
Boundary, GL-2

C

Category, Layer, GL—2
Chaining, GL-2
Circle, GL-2

Component, GL-2
Part, GL-2

Cone
Direction, GL-2
Origin, GL-2

Constraints, GL—2

Construction Points, GL—2

Control Point, GL—2

Convert, Curves to B-Curves, GL—-2

Coordinate Systems, GL—3
Sketch, GL-7

Counterclockwise, GL—-3
Current Layout, GL-3
Cursor, GL-6

Curve, GL-3

D

Defaults, GL-3

Defining Points, GL—3
Degree-of-freedom Arrows, GL—3
Design in Context, GL—3
Dimension Constraints, GL—3
Direction, Cone, GL-2

Directory, GL—3

Displayed Part, GL—3

E

Edit in Place, GL-3
Emphasize Work Part, GL—3
Endpoint, GL-3
Expressions, GL—3

Names, GL-5 7//A
7 IN -

/ /

F v

Face, GL-3
Features, GL—4
File, GL—4
Filtering, GL—4

Font
Box, GL—4
Character, GL—4
Line, GL-4

Free Form Feature, GL—4

G

Generator Curve, GL—4
Geometric Constraint, GL—4
Grid, GL—4

Guide Curve, GL—-4

H

Half Angle, GL-2

Open API IN-1

All Rights Reserved Student Guide

0,
4%

/ /

e

Index

Inflection, GL—4
Knot Points, GL—4
Layer, GL-5
Layout, GL-5

Listing Window, GL—-5
Loaded Part, GL-5

M

Menu, GL-5
Model, GL—-6

Model Space, GL-5

O

Object, GL-5

Offset Surface, GL—-5
Origin, Cone, GL-2

P

Parametric Design, GL—5
Part, GL-5, GL-6

Partially Loaded Part, GL—6
Point Set, GL—6

Point Subfunction, GL—6

R

Read-Only Part, GL—6
Real Time Dynamics, GL—6

Refresh, GL—6

Right Hand Rule, GL—6
Rotation, GL—6

IN-2

Student Guide

S

SCS, GL-7
Sheet, GL—-6
Sketch, GL—-6

Coordinate System, GL—7
Solid Body, GL-7

Spline, GL—-7

Stored Layout, GL—7
Stored View, GL—-7

String, GL—7

Sub-assembly, GL—7

Surface, GL-7
System, GL—-7

T

Temporary Part, GL—7
Tfr-ISO, GL-4

Tfr-Tri, GL-7

Top—Down Modeling, GL—7

Trim, GL-7

U

uc5540, 6-2

uc6430, 6—13
uc6431, 6—13
uc6432, 6—13
uc6433, 6—13
uc6434, 6—13
uc6b442, 6—13
uc6443, 6—13
uc6b449, 6—13
uc6450, 6—13
uc6454, 6—13
uc6464, 6—13
uc6466, 6—13
uc6468, 6—13
uc6476, 7-3

uc6477, 7-3

uc6478, 7-3

uc6479, 7-3

©EDS
All Rights Reserved

Unigraphics NX 2

Index

uc6480, 7-3

uc6481, 7-3

uc6482, 7-3

uc6483, 7-3

uc6484, 7-3

uc6485, 7-3

uc6486, 7-3

uc6492, 7-3

uc6495, 7-3

uc6496, 7-3

uc6499, 7-3
UF_ASSEM_ask_assem_options, 3—11
UF_ASSEM_ask_child_of_instance, 3—11
UF_ASSEM_ask component_data, 3—11
UF_ASSEM_ask _inst_of part_occ, 3—11
UF_ASSEM_ask mc_array_data, 3—11
UF_ASSEM_ask _occs_of_entity, 3—11
UF_ASSEM_ask_occs_of_part, 3—11
UF_ASSEM_ask _parent_of_instance, 3—11
UF_ASSEM_ask_prototype_of_occ, 3—11
UF_ASSEM_ask work_part, 3—11
UF_ASSEM_create_component_part, 3—11
UF_ASSEM_create_mc_array, 3—11
UF_ASSEM_cycle_ents_in_part_occ, 3—11
UF_ASSEM is_occurrence, 3—11
UF_ASSEM _is_part_occurrence, 3—11
UF_ASSEM_remove_instance, 3—11
UF_ASSEM_set_assem_options, 3—11
UF_ATTR ask_part_attribute, 8§—3
UF_ATTR_ask_part_attrs, 8—3
UF_ATTR _ask_part_attrs_in_file, 8—3
UF_ATTR_assign, §—3

UF_ATTR cycle, 8-3

UF_ATTR_delete, 8—3
UF_ATTR_delete_all, 8—3

UF_ATTR read_value, 8§—3
UF_CSYS_ask_wcs, 6—12
UF_CSYS_create_csys, 6—12
UF_CSYS_create_matrix, 6—12
UF_CSYS_create_temp_csys, 6—12

UF_CSYS_map_point, 6—12
UF_CSYS_set_wcs, 6—12

UF_DRAW _ask_current_drawing, 7—3
UF_DRAW _ask_drawing_info, 7—3
UF_DRAW_define_view_manual_rect, 7—3
UF_DRAW_import_view, 7—3
UF_DRAW _set_drawing_info, 7—3
UF_DRAW _update_one_view, 7—3
UF_DREF _ask_preferences, 6—2
UF_DREF _create_horizontal dim, 6—2
UF_DRF _create_label, 6—2

UF_DREF _create_vertical_dim, 6—2
UF_DREF _init_object_structure, 6—2
UF_DREF _set_preferences, 6—2
UF_LAYER ask_status, 3—12
UF_LAYER cycle_by_layer, 3—12
UF_LAYER set_status, 3—12
UF_MODL_active_part, 5—9
UF_MODL_ask_block_parms, 5—10

UF_MODL _ask_body_edges, 5—10 777
UF_MODL _ask_body_faces, 5—10 ; IN :
UF_MODL_ask_body_type, 5—10 YIS

UF_MODL_ask_edge_body, 5—10
UF_MODL_ask_edge_faces, 5—10
UF_MODL _ask_edge_type, 5—10
UF_MODL _ask_edge _verts, 5—10
UF_MODL _ask_exp, 4—4

UF_MODL _ask_exp_tag_string, 4—4
UF_MODL _ask_exp_tag_value, 4—4
UF_MODL _ask_face_body, 5—10
UF_MODL_ask_face_data, 5—10
UF_MODL_ask_face_edges, 5—10
UF_MODL_ask_feat_body, 5—10
UF_MODL_ask_feat_faces, 5—10
UF_MODL _ask_list_count, 5—3
UF_MODL _ask_list_item, 5—3
UF_MODL_ask_minimum_dist, 5—10
UF_MODL_ask_simple_hole_parms, 5—10
UF_MODL_create_blend, 5—9
UF_MODL_create_blockl, 5—-9
UF_MODL_create_cyll, 5-9

Open API IN-3

All Rights Reserved Student Guide

Index

UF_MODL create_exp, 4—4 UF_VIEW cycle objects, 6—13
UF_MODL_create_exp_tag, 4—4 UF_VIEW_delete, 6—13
UF_MODL_create_hollow, 5—9 UF_VIEW_expand_view, 6—2
UF_MODL _create_linear_iset, 5—9 UF_VIEW _fit_view, 6—13
UF_MODL create_list, 5—3 UF_VIEW _is_expanded, 6—2
UF_MODL_create_rect_pocket, 5—9 UF _view_save_all_active_views, 6—13
UF_MODL_create_rect_slot, 5-9 UF_VIEW _unexpand_work_view, 6—2
UF_MODL create_simple_hole, 5—9 Unigraphics, GL—7
UF_MODL _delete_exp, 4—4 Units, GL—7
UF_MODL_delete_exp_tag, 4—4 Upgrade, Component, GL—7
UF_MODL_delete_list, 5—3
UF_MODL_delete_list_item, 5—3 V
UF_MODL_dissect_exp_string, 4—4
UF_MODL edit_exp, 4—4 Version, GL—38
UF_MODL eval_exp, 4—4 View, GL—8
UF_MODL_export_exp, 4—4 }Fsr?;l:gilg,’ ((}}]I: :;
UF_MODL _import_exp, 4—4 Work, GL-8
UF_MODL _operations, 5—9
UF_MODL _put_list_item, 5-3 W

7/ //, UF_MODL rename_exp, 4—4

, IN 7 UF_MODL _update, 4—4 WCS, GL-8

S UF_OBJ_ask_name, 5—11 Work Layer, GL—8
UF_OBJ _ask_status, 3—13 Work Part, GL—8
UF_OBIJ_ask_type_and_subtype, Object, 3—13
UF_OBIJ cycle by name, 5—11 X
UF OBJ delete name, 5—11

T - XC-Axis, GL-8

UF_OBJ_delete_object, 3—13
UF_OBJ _set_def cre color, 3—13
UF_OBJ_set name, 5—11 Y
UF_PART _import, 7—4 YC-Axis, GL—8
UF_PLOT_display, A—1
UF_PLOT_drawing, A—1
UF_VIEW _ask_tag_of view_name, 6—2 Z
UF_VIEW_ask_work_view, 6—13 ZC-Axis, GL-8
IN—4 Open APT oEDS

Student Guide All Rights Reserved Unigraphics NX 2

